精英家教网 > 高中数学 > 题目详情
如图,已知ACDE是直角梯形,且EDAC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2,ED=
1
2
AB
,P是BC的中点.
(Ⅰ)求证:DP平面EAB;
(Ⅱ)求平面EBD与平面ABC所成锐二面角大小的余弦值.
(I)证明:取AB的中点F,连接PF,EF.
又∵P是BC的中点,∴FP
.
1
2
AC

ED=
1
2
AB=
1
2
AC
,EDAC,
FP
.
ED

∴四边形EFPD是平行四边形,
∴PDEF.
而EF?平面EAB,PD?平面EAB,
∴PD平面EAB.
(II)∵∠BAC=90°,平面ACDE⊥平面ABC,∴BA⊥平面ACDE.
以点A为坐标原点,直线AB为x轴,AC为y轴,建立如图所示的空间直角坐标系,
则z轴在平面EACD内.则A(0,0,),B(2,0,0),E(0,1,
3
)
D(0,2,
3
)

EB
=(2,-1,-
3
)
ED
=(0,1,0)

设平面EBD的法向量
n
=(x,y,z)
,由
n
EB
=0
n
ED
=0
,得
2x-y-
3
z=0
y=0

取z=2,则x=
3
,y=0.∴
n
=(
3
,0,2)

可取
m
=(0,0,1)
作为平面ABC的一个法向量,
cos<
m
n
=
m
n
|
m
||
n
|
=
2
7
=
2
7
7

即平面EBD与平面ABC所成锐二面角大小的余弦值为
2
7
7
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,△ABC是等腰直角三角形∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′-BCDE
(Ⅰ)在棱A′B上找一点F,使EF平面A′CD;
(Ⅱ)当四棱锥A'-BCDE体积取最大值时,求平面A′CD与平面A′BE夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为a的正方形ABCD沿对角线AC折成一个直二面角,则此时BD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设一个正三棱锥的侧面与底面所成的角为α,相邻两个侧面所成的角为β,那么两个角α和β的三角函数间的关系是(  )
A.2cos2α+3cosβ=1B.2cosα+3cos2β=1
C.3cos2α+2cosβ=1D.3cosα+2cos2β=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,SD⊥AB,且AB=2AD,SD=
3
AD,
(1)求证:平面SDB⊥平面ABCD;
(2)求二面角A-SB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=2,CD=
3
AB=
3
,E、F
分别为AC、AD上的动点.
(1)若
AE
EC
=
AF
FD
,求证:平面BEF⊥平面ABC;
(2)若
AE
EC
=1
AF
FD
=2
,求平面BEF与平面BCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,矩形ABEF和正方形ABCD有公共边AB,它们所在平面成60°的二面角,AB=CB=2a,BE=a,则DE=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是平行四边形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,设E为PC中点,点F在线段PD上且PF=2FD.
(Ⅰ)求证:BE平面ACF;
(Ⅱ)设二面角A-CF-D的大小为θ,若|cosθ|=
42
14
,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正三棱锥中,分别是 的中点,上任意一点,则直线所成的角的大小是    (     )
A.B.C.D.随点的变化而变化.

查看答案和解析>>

同步练习册答案