精英家教网 > 高中数学 > 题目详情
已知几何体A-BCED的三视图如图所示,其中侧视图和俯视图都是腰长为4的等腰直角三角形,正视图为直角梯形.求:
(1)异面直线DE与AB所成角的余弦值;
(2)二面角A-ED-B的正弦值;
(3)此几何体的体积V的大小.
(1)取EC的中点是F,连接BF,
则BFDE,∴∠FBA或其补角即为异面直线DE与AB所成的角.
在△BAF中,AB=4
2
,BF=AF=2
5

cos∠ABF=
10
5
,.
∴异面直线DE与AB所成的角的余弦值为
10
5
.(3分)
(2)AC⊥平面BCE,过C作CG⊥DE交DE于G,连AG.可得DE⊥平面ACG,从而AG⊥DE
∴∠AGC为二面角A-ED-B的平面角.
在△ACG中,∠ACG=90°,AC=4,CG=
8
5
5

∴tan∠AGC=
5
2
,.∴sin∠AGC=
5
3

∴二面角A-ED-B的正弦值为
5
3
.(6分)
(3)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=2,
∴S梯形BCED=
1
2
×(4+2)×4=12
∴V=
1
3
•S梯形BCED•AC=
1
3
×12×4=16.
即该几何体的体积V为16.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

正四面体(所有面都是等边三角形的三棱锥)相邻两侧面所成二面角的余弦值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=2,CD=
3
AB=
3
,E、F
分别为AC、AD上的动点.
(1)若
AE
EC
=
AF
FD
,求证:平面BEF⊥平面ABC;
(2)若
AE
EC
=1
AF
FD
=2
,求平面BEF与平面BCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,直线PA⊥平面ABC,且∠ABC=90°,又点Q,M,N分别是线段PB,AB,BC的中点,且点K是线段MN上的动点.
(Ⅰ)证明:直线QK平面PAC;
(Ⅱ)若PA=AB=BC=8,且二面角Q-AK-M的平面角的余弦值为
3
9
,试求MK的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是平行四边形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,设E为PC中点,点F在线段PD上且PF=2FD.
(Ⅰ)求证:BE平面ACF;
(Ⅱ)设二面角A-CF-D的大小为θ,若|cosθ|=
42
14
,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.
(1)求证:AB⊥CD;
(2)求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A、B、C三点在球心为O,半径为3的球面上,且几何体O-ABC为正三棱锥,若A、B两点的球面距离为π,则正三棱锥的侧面与底面所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知轴对称平面五边形ADCEF(如图1),BC为对称轴,AD⊥CD,AD=AB=1,CD=BC=
3
,将此图形沿BC折叠成直二面角,连接AF、DE得到几何体(如图2).
(1)证明:AF平面DEC;
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是________.

查看答案和解析>>

同步练习册答案