精英家教网 > 高中数学 > 题目详情
如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.
(1)求证:AB⊥CD;
(2)求二面角D-AB-C的正切值.
(1)证明:∵DC⊥BC,且平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,
∴DC⊥平面ABC,
又AB?平面ABC,
∴DC⊥AB.…(5分)
(2)过C作CE⊥AB于E,连接ED,
∵AB⊥CD,AB⊥EC,CD∩EC=C,
∴AB⊥平面ECD,
又DE?平面ECD,∴AB⊥ED,
∴∠CED是二面角D-AB-C的平面角,…(9分)
设CD=a,则BC=
a
tan30°
=
3
a

∵△ABC是正三角形,
∴EC=BCsin60°=
3a
2

在Rt△DEC中,tan∠DEC=
DC
EC
=
a
3a
2
=
2
3
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知正三棱柱ABC-A1B1C1的每条棱长均为a,M为棱A1C1上的动点.
(1)当M在何处时,BC1平面MB1A,并证明之;
(2)在(1)下,求平面MB1A与平面ABC所成的二面角的大小;
(3)求B-AB1M体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A、B是直二面角α-l-β的棱l上的两点,分别在α,β内作垂直于棱l的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(  )
A.1B.2C.
2
D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,点O是BD中点.
(Ⅰ)求证:平面BDD1B1⊥平面C1OC;
(Ⅱ)求二面角C1-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知几何体A-BCED的三视图如图所示,其中侧视图和俯视图都是腰长为4的等腰直角三角形,正视图为直角梯形.求:
(1)异面直线DE与AB所成角的余弦值;
(2)二面角A-ED-B的正弦值;
(3)此几何体的体积V的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD-A′B′C′D′中,侧棱与底面垂直,ABCD,AD⊥DC,且AB=AD=1,BC=
2
AA′=
6
2

(I)求证:DB⊥BC′;
(II)求二面角A′-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,BB1=BC=2,且M是BC的中点,点N在CC1上.
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M-AB1-N的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三个互不重合的平面 ,给出下列命题:
                   ②
③若                 ④若
其中正确命题的个数为( ).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:
①若m?β,α⊥β,则m⊥α;②若α∥β,m?α,则m∥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.
其中正确命题的序号是(  )
A.①③B.①②C.③④D.②③

查看答案和解析>>

同步练习册答案