精英家教网 > 高中数学 > 题目详情
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点O是BD中点.
(Ⅰ)求证:平面BDD1B1⊥平面C1OC;
(Ⅱ)求二面角C1-BD-C的正切值.
(Ⅰ)证明:在正方体ABCD-A1B1C1D1中,点O是BD中点,
∵BC1=DC1,BC=DC,
∴C1O⊥BD,CO⊥BD-------------------(2分)
∵C1O∩CO=O,C1O?平面C1OC,CO?平面C1OC,
∴BD⊥平面C1OC------------------(5分)
∵BD?平面BDD1B1,∴平面BDD1B1⊥平面C1OC.--------------(7分)
(Ⅱ)由(Ⅰ)可知∠C1OC是二面角C1-BD-C的平面角---------------(11分)
C1
C=1,OC=
2
2

∴在Rt△C1OC中,tan∠C1OC=
C1C
OC
=
2

故二面角C1-BD-C的正切值为
2
.---------------(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线BE与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥相邻二侧面形成的二面角为θ,则θ的取值范围是(  )
A.(0,
π
2
B.(
π
3
π
2
C.(
π
4
π
3
D.(
π
2
,π)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AD=AA1,AB=2,点E在棱AB上.
(1)证明:D1E⊥A1D;
(2)当E点为线段AB的中点时,求异面直线D1E与AC所成角的余弦值;
(3)试问E点在何处时,平面D1EC与平面AA1D1D所成二面角的平面角的余弦值为
6
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知
u
=(-2,2,5)
v
=(6,-4,4)
u
v
分别是平面α,β的法向量,则平面α,β的位置关系式(  )
A.平行B.垂直
C.所成的二面角为锐角D.所成的二面角为钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,直线PA⊥平面ABC,且∠ABC=90°,又点Q,M,N分别是线段PB,AB,BC的中点,且点K是线段MN上的动点.
(Ⅰ)证明:直线QK平面PAC;
(Ⅱ)若PA=AB=BC=8,且二面角Q-AK-M的平面角的余弦值为
3
9
,试求MK的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形ABCD中,ADBC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EFBC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.
(1)求证:AB⊥CD;
(2)求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.
(I)求证:A1B平面AEC1
(II)若棱AA1上存在一点M,满足B1M⊥C1E,求AM的长;
(Ⅲ)求平面AEC1与平面ABB1A1所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案