【题目】已知椭圆的半焦距为,圆与椭圆有且仅有两个公共点,直线与椭圆只有一个公共点.
(1)求椭圆的标准方程;
(2)已知动直线过椭圆的左焦点,且与椭圆分别交于两点,试问:轴上是否存在定点,使得为定值?若存在,求出该定值和点的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)那么方程在区间上的根的个数是___________.
(2)对于下列命题:
①函数是周期函数;
②函数既有最大值又有最小值;
③函数的定义域是,且其图象有对称轴;
④在开区间上,单调递减.
其中真命题的序号为______________(填写真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知等腰直角三角形的斜边所在直线方程为,其中点在点上方,直角顶点的坐标为.
(1)求边上的高线所在直线的方程;
(2)求等腰直角三角形的外接圆的标准方程;
(3)分别求两直角边,所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:
温度 | 20 | 25 | 30 | 35 |
产卵数个 | 5 | 20 | 100 | 325 |
参考数据:,,,
,,
,,
,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);
(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏中,
①摸出3个白球的概率;
②获奖的概率;
(2)求在2次游戏中获奖次数的分布列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com