精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
的离心率为
3
,若它的一条准线与抛物线y2=4x的准线重合.设双曲线与抛物线的一个交点为P,抛物线的焦点为F,则|PF|=
 
分析:由离心率求得a和c的关系,进而根据双曲线方程准线与抛物线y2=4x的准线重合,得其准线方程,求得a和c的关系,进而求得a,c,则求得b,双曲线方程可得,进而把抛物线和双曲线方程联立求得交点坐标,则点到焦点的距离可求.
解答:解:由e=
3
,得
c
a
=
3

由一条准线与抛物线y2=4x的准线重合,
得准线为x=-1,
所以
a2
c
=1,
故a=
3
,c=3,b=
6

所以双曲线方程为
x2
3
-
y2
6
=1,左准线方程为:x=-1,
x2
3
-
y2
6
=1
y 2=4x
得交点为(3,±
12
),
∵P到抛物线的焦点F的距离等于到其准线的距离,
∴|PF|=3-(-1)=4
则|PF|=4
故答案为:4.
点评:本题主要考查了抛物线的简单性质,考查了抛物线与双曲线的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案