精英家教网 > 高中数学 > 题目详情

在等差数列{an},等比数列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
(Ⅰ)设Sn为数列{an}的前n项和,求anbn和Sn
(Ⅱ)设数学公式(n∈N*),Rn=C1+C2+…+Cn,求Rn

解(I)由题意可得


∴an=1+(n-1)×1=n,

(II)∵==

∴Rn=C1+C2+…+Cn
=++…+
=

 


分析:(I)利用等差数列及等比数列的通项公示表示已知条件,可求d,q,然后代入即可求解
(II)由(I)可知,=,利用裂项求和即可求解
点评:本题考查了等差,等比数列的通项公式的求法,以及求和中裂项求和方法应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,若S2≥4,S3≤9,则a4的最大值为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

A组:在等差数列{an},前n项和为Sn,a2=0,S5=10,求an及Sn
B组:在等差数列{an},前n项和为Sn,a2=0,S5=10,
(1)求通项公式an; 
(2)若bn=3an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a2+a3=7,a4+a5+a6=18.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求
1
S3
+
1
S6
+…+
1
S3n

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中前n项和为Sn,且S2011=-2011,a1007=1,则a2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)在等差数列{an}中,若a3+a6+a9+a12+a15=120,则a10-
1
3
a12
的值为(  )

查看答案和解析>>

同步练习册答案