精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,若S2≥4,S3≤9,则a4的最大值为
7
7
分析:设等差数列{an}的首项和公差分别为:a1和d,可得求和公式,进而可得2a1+d≥4,3a1+3d≤9,而a4=a1+3d=-2(2a1+d)+
5
3
(3a1+3d),代入可得.
解答:解:设等差数列{an}的首项和公差分别为:a1和d,
由求和公式可得Sn=na1+
n(n-1)
2
d

故有S2=2a1+d≥4,S3=3a1+3d≤9,
所以-2(2a1+d)≤-8,
5
3
(3a1+3d)≤15

故a4=a1+3d=-2(2a1+d)+
5
3
(3a1+3d)≤7
故答案为:7
点评:本题考查等差数列的求和公式和整体代入法求解式子的取值范围,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案