精英家教网 > 高中数学 > 题目详情
曲线在点处的切线方程为________________.
.

试题分析:,所以,当时,,故曲线在点处的切线方程为,即.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若曲线处的切线相互平行,求的值;
(2)试讨论的单调性;
(3)设,对任意的,均存在,使得.试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数),为常数),是实数集上的奇函数.
(1)求证:
(2)讨论关于的方程:的根的个数;
(3)设,证明:为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],
[0,1],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上可导,其导函数为,若满足:,则下列判断一定正确的是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知可导函数的导函数满足,则不等式的解集是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:如果函数在区间上存在,满足则称函数在区间上的一个双中值函数,已知函数是区间上的双中值函数,则实数的取值范围是  (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

记定义在R上的函数的导函数为.如果存在,使得成立,则称为函数在区间上的“中值点”.那么函数 在区间[-2,2]上的“中值点”为____

查看答案和解析>>

同步练习册答案