精英家教网 > 高中数学 > 题目详情

【题目】已知三条不重合的直线 和两个不重合的平面 ,下列命题正确的是( )
A.若 ,则
B.若 ,且 ,则
C.若 ,则
D.若 ,且 ,则

【答案】D
【解析】A选项,可能有 ;B选项,若 ,则 ,无条件 ,直线 与平面 位置关系不确定;C选项,在空间中, 可能平行,可能异面,可能相交, 所以答案是:


【考点精析】本题主要考查了直线与平面平行的判定和直线与平面平行的性质的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的动点的轨迹为曲线C,关于曲线C的几何性质,给出下列四个结论: ①曲线C的方程为x2=4y;
②曲线C关于y轴对称
③若点P(x,y)在曲线C上,则|y|≤2;
④若点P在曲线C上,则1≤|PF|≤4
其中,所有正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=5,a2=2,an=2an1+3an2 , (n≥3) (Ⅰ)证明数列{an﹣3an1}成等比数列,并求数{an}列的通项公式an
(Ⅱ)若数列bn= (an+1+an),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一个周期内的图象如图所示.
(1)求函数f(x)的解析式;
(2)求g(x)=f(3x+)﹣1在[﹣]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥S﹣ABCD中,侧棱与底面所成的角为α,侧面与底面所成的角为β,侧面等腰三角形的底角为γ,相邻两侧面所成的二面角为θ,则α、β、γ、θ的大小关系是(
A.α<β<γ<θ
B.α<β<θ<γ
C.θ<α<γ<β
D.α<γ<β<θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱 中, 的中点.

(1)求证:平面
(2)若 ,求点 到平面 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一个负根,求a的取值范围;
(Ⅱ)当x>﹣1时,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?

查看答案和解析>>

同步练习册答案