精英家教网 > 高中数学 > 题目详情
11.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润 s(万元)与销售时间 t(月)之间的关系(即前t个月的利润总和与t之间的关系式)为s=$\frac{1}{2}$t2-2t,若累积利润 s 超过30万元,则销售时间t(月)的取值范围为(  )
A.t>10B.t<10C.t>30D.t<30

分析 由题意,$\frac{1}{2}$t2-2t>30,解不等式,即可求出销售时间t(月)的取值范围.

解答 解:由题意,$\frac{1}{2}$t2-2t>30,即t2-4t-60>0,
∴(t-10)(t+4)>0,
∵t>0,
∴t>10,
故选:A.

点评 本题考查函数模型的运用,考查解不等式,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x0∈R,有x02=-1;命题q:?x∈(0,$\frac{π}{2}$),有x>sinx.则下列命题是真命题的是(  )
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在区间[-2,4]上随机地取一个数x,若x满足|x|≤m的概率为$\frac{2}{3}$,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)的单调区间及在[2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{x+2(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,则f(0)=2,f[f(0)]=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设i是虚数单位,若复数z满足z(1+i)=(1-i),则复数z的模|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xlnx.
(1)过点A(-e-2,0)作函数y=f(x)图象的切线,求切线方程.
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z满足z•i=3-i,则在复平面内,其共轭复数$\overline{z}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,A=60°,边$a=3\sqrt{3}$
(1)若c=3,求边b的长;
(2)当c=3时,若$\overrightarrow{CD}=\sqrt{3}\overrightarrow{DA}$,求∠DBC的大小;
(3)若$sinB=(\sqrt{3}-1)sinC$,求sinB•sinC的值.

查看答案和解析>>

同步练习册答案