精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=xlnx.
(1)过点A(-e-2,0)作函数y=f(x)图象的切线,求切线方程.
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围.

分析 (1)设切点T(x0,y0)则kAT=f′(x0),由此能求出切线方程
(2)由f(x)≥-x2+ax-6在(0,+∞)上恒成立,知a≤lnx+x+$\frac{6}{x}$,设g(x)=lnx+x+$\frac{6}{x}$,由此能够求出实数a的取值范围.

解答 解:设切点T(x0,y0)则kAT=f′(x0),
∴$\frac{{x}_{0}ln{x}_{0}}{{x}_{0}+\frac{1}{{e}^{2}}}$=lnx0+1即e2x0+lnx0+1=0
设h(x)=e2x+lnx+1,当x>0时h′(x)>0,
∴h(x)是单调递增函数,
∴h(x)=0最多只有一个根,
又h($\frac{1}{{e}^{2}}$)=e2×$\frac{1}{{e}^{2}}$+ln$\frac{1}{{e}^{2}}$+1=0,
∴x0=$\frac{1}{{e}^{2}}$
由f'(x0)=-1得切线方程是x+y+$\frac{1}{{e}^{2}}$=0.
(2)∵f(x)≥-x2+ax-6在(0,+∞)上恒成立,
∴a≤lnx+x+$\frac{6}{x}$,
设g(x)=lnx+x+$\frac{6}{x}$,
则g′(x)=$\frac{{x}^{2}+x-6}{{x}^{2}}$=$\frac{(x+3)(x-2)}{{x}^{2}}$,
当x>2时,g′(x)>0,函数g(x)是增函数,
当0<x<2时,g′(x)<0,函数g(x)是减函数,
∴a≤g(2)=5+ln2.
即实数a的取值范围是(-∞,5+ln2].

点评 本题考查利用导数求函数的单调区间和实数的取值范围的方法,解题时要认真审题,仔细解答,注意分类讨论思想和等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.
(1)求证:BD⊥平面PAC;
(2)求点C到平面PBD的距离.
(3)求二面角P-CD-B余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列关于互不相同的直线M,l,n和平面α、β的四个命题:
①若m?α,l∩α=A,点A∉m,则l与m异面;
②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若m⊥n,n⊥β,β⊥α,则m⊥α;
④若m⊥β,n⊥β,n⊥α,则m⊥α;
⑤若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β.
其中为真命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润 s(万元)与销售时间 t(月)之间的关系(即前t个月的利润总和与t之间的关系式)为s=$\frac{1}{2}$t2-2t,若累积利润 s 超过30万元,则销售时间t(月)的取值范围为(  )
A.t>10B.t<10C.t>30D.t<30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离是1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列四个命题:
(1)函数$y=sin(2x+\frac{π}{3})在区间(-\frac{π}{3},\frac{π}{6})$内单调递增.
(2)函数$y=cos(x+\frac{π}{3})$的图象关于点$(\frac{π}{6},0)$对称.
(3)函数$y=tan(x+\frac{π}{3})$的图象关于直线$x=\frac{π}{6}$成轴对称.
(4)把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$得到函数y=3sin2x的图象.
其中真命题的序号是(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x).
(1)求函数f(x)的最小正周期与单调递增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,若△ABC外接圆半径R=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点,点A为双曲线虚轴的一个顶点,过点F,A的直线与双曲线的一条渐近线在y轴右侧的交点为B,若$\overrightarrow{FA}=(\sqrt{2}-1)\overrightarrow{AB}$,则此双曲线的离心率是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在棱柱中(  )
A.只有两个面平行B.所有的棱都相等
C.所有的面都是平行四边形D.两底面平行,且各侧棱也平行

查看答案和解析>>

同步练习册答案