精英家教网 > 高中数学 > 题目详情
13.在棱柱中(  )
A.只有两个面平行B.所有的棱都相等
C.所有的面都是平行四边形D.两底面平行,且各侧棱也平行

分析 根据棱柱的定义,可得结论,

解答 解:根据棱柱的定义,可得棱柱中只有两个面平行、所有的棱都相等、所有的面都是平行四边形,不正确.
两底面平行,且各侧棱也平行,正确.
故选D.

点评 本题考查棱柱的定义,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xlnx.
(1)过点A(-e-2,0)作函数y=f(x)图象的切线,求切线方程.
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式:
(1)|x-1|+|2x+4|≤8
(2)x-x2+6<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,A=60°,边$a=3\sqrt{3}$
(1)若c=3,求边b的长;
(2)当c=3时,若$\overrightarrow{CD}=\sqrt{3}\overrightarrow{DA}$,求∠DBC的大小;
(3)若$sinB=(\sqrt{3}-1)sinC$,求sinB•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等比数列{an}中,a5=2,a6=5,则数列{lgan}的前10项的和为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}{x^2}$+x-2lnx(x>0).
(1)求f(x)的单调区间;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:x2+y2-2x-6y-3=0.
(1)求圆心C的坐标;
(2)若直线l:x-y+a=0与圆C相交于两点A,B,且弦长|AB|=5$\sqrt{2}$,求实数a的值;
(3)问是否存在实数k,使得直线y=kx+3与圆C交于M,N两点,且以MN为直径的圆经过坐标原点O.若存在,请求出k的值;若不存在,请说明理由.
【提示:(3)设M(x1,y1),N(x2,y2),以MN为直径的圆经过坐标原点O?OM⊥ON?x1x2+y1y2=0】

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,在区间(0,1)上是增函数的是(  )
A.y=|x-1|B.y=x${\;}^{\frac{1}{2}}$C.y=$\frac{1}{x}$D.y=2x2-x+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+x+x3)dx=$\frac{π+3}{4}$.

查看答案和解析>>

同步练习册答案