精英家教网 > 高中数学 > 题目详情
设向量
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2
,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.
(1)∵
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2

(x+1)2+y2
+
(x-1)2+y2
=2
2

∴动点P(x,y)的轨迹C的方程是以(±1,0)为焦点,以长轴长为2
2
,短轴长为2的椭圆,
∴动点P(x,y)的轨迹C的方程为
x2
2
+y2=1

(2)∵点A(1,0)和B(-1,0)为C的两个焦点,连接BM,BN,
由椭圆的对称性可知四边形AMBN是平行四边形,
∴∠AMB=π-∠MAN=
π
3

设MA=r1,MB=r2
由椭圆定义知r1+r2=2
2
,即r12+r22+2r1r2=8,
在△AMB中,由余弦定理知r12+r2 2-2r1r2cos
π
3
=4

两式作差,得r1r2=
4
3

S△MAN=
1
2
r1r2sin
π
3
=
3
3

(3)设动点D(2,y0),
则以OD为直径的圆的方程为x(x-2)+y(y-y0)=0,①
直线GA:2x+y0y-2=0,②
由①②联立消去y0得G的轨迹方程是x2+y2=2,
∴OG=
2
(定值)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2
,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cos
x
2
,1),
b
=(cos
π+x
2
,3cosx),
(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=(
a
-
b
)•
a
,在△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=4,a=
10
,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设圆(x-5)2+y2=16的圆心为C,此圆和抛物线y2=px(p>0)有四个交点,若在x轴上方的两个交点为A(x1
px1
),B(x2
px2
)(x1<x2),坐标原点为O,△AOB的面积为S.
(1)求p的取值范围;
(2)求S关于p的函数f(p)的表达式及S的最大值;
(3)求当S取最大值时,向量
CA
CB
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)设向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,满足|
s
|+|
t
 |=2
2
,已知两定点A(1,0),B(-1,0),动点P(x,y),
(1)求动点P(x,y)的轨迹C的方程;
(2)已知直线m:y=x+t交轨迹C于两点M,N,(A,B在直线MN两侧),求四边形MANB的面积的最大值.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),求证:线段OG的长为定值.

查看答案和解析>>

同步练习册答案