精英家教网 > 高中数学 > 题目详情
4.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为梯形,AD∥BC,BC=6,PA=AD=CD=2,E是BC上一点且BE=$\frac{2}{3}$BC,PB⊥AE.
(Ⅰ)求证:AB⊥平面PAE;
(Ⅱ)求点C到平面PDE的距离.

分析 (Ⅰ)证明AE⊥平面PAB,可得AE⊥AB.利用PA⊥AB,即可证明AB⊥平面PAE;
(Ⅱ)由VP-ECD=VC-PDE得点C到平面PDE的距离.

解答 (Ⅰ)证明:由已知可得:AD∥EC,且AD=EC,
∴四边形AECD为平行四边形,
∴AE∥CD,且AE=CD=2.
∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE,
又∵PB⊥AE,PB∩PA=P,
∴AE⊥平面PAB,又AB?平面PAB,
∴AE⊥AB.
又∵PA⊥AB,PA∩AE=A,
∴AB⊥平面PAE,…(6分)
(Ⅱ)解:由(Ⅰ)可知△ABE是直角三角形且∠AEB=60°,
从而有△CDE是边长为2的等边三角形.
设C到平面PDE的距离为h,
由VP-ECD=VC-PDE得$\frac{1}{3}$S△ECD•PA=$\frac{1}{3}$S△PDE•h,
解得h=$\frac{2\sqrt{21}}{7}$,
即C到平面PDE的距离为$\frac{2\sqrt{21}}{7}$.…(12分)

点评 本题考查线面垂直的判断与性质,考查点到平面距离的计算,考查三棱锥体积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.一个几何体的三视图如图所示,那么该几何体的最长棱长为(  )
A.2B.$2\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在梯形ABCD中,AB∥CD,AB=2AD=2DC=2CB=2,四边形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,点G是BF的中点.
(Ⅰ)求证:CG∥平面ADF;
(Ⅱ)求二面角A-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在如图所示的几何体中,四边形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1,E是AC的中点.
(1)求证:A1E∥平面BB1C1C;
(2)若AC=BC=2$\sqrt{2}$,AB=2BB1=2,求二面角A-BA1-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知面积为S的△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin(A+C)=2sinCcosA,3sinB=2sinA,2≤$\frac{1}{2}$c2+$\frac{3}{2}$ac≤18,当$\frac{9\sqrt{2}S+16a}{4(c+1)^{2}}$取得最大值时,a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面几种推理是合情推理的是(  )
①由圆的性质类比出球的有关性质;
②由直角三角形、等腰三角形、等边三角形的内角和是180°归纳出所有三角形的内角和是180°;
③一班所有同学的椅子都坏了,甲是一班学生,所以甲的椅子坏了;
④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形内角和是(n-2)•180°.
A.①②④B.①③④C.②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设M是49个不同的自然数构成的集合,M中每一个数的素因子均小于10,求证:从M中一定可选出四个不同的数,使它们之积等于一个自然数的四次方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{a}$=(1,cosθ))与$\overrightarrow{b}$=(-1,2cosθ)垂直,则cos2θ等于(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

同步练习册答案