精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2
3
sin2x+2sinxcosx-
3
(
π
3
≤x≤
11π
24
)

(1)求函数f(x)的值域;
(2)已知锐角△ABC的两边长分别为函数f(x)的最大值与最小值,且△ABC的外接圆半径为
3
2
4
,求△ABC的面积.
考点:正弦定理的应用,三角函数中的恒等变换应用
专题:计算题,三角函数的求值,解三角形
分析:(1)利用辅助角公式、二倍角公式化简函数,即可求函数f(x)的值域;
(2)不妨设a=
3
,b=2,利用△ABC的外接圆半径为
3
2
4
,求出sinA,sinB,进而求出sinC,即可求△ABC的面积.
解答: 解:(1)f(x)=sin2x-
3
cos2x=2sin(2x-
π
3
),
π
3
≤x≤
11π
24

π
3
≤2x-
π
3
12

3
2
≤sin(2x-
π
3
)≤1,
3
≤2sin(2x-
π
3
)≤2,
∴函数f(x)的值域为[
3
,2];
(2)不妨设a=
3
,b=2,
∵△ABC的外接圆半径为
3
2
4

∴sinA=
a
2r
=
6
3
,sinB=
b
2r
=
2
2
3

∴cosA=
3
3
,cosB=
1
3

∴sinC=sin(A+B)=sinAcosB+cosAsinB=
6
3

∴S△ABC=
1
2
absinC=
1
2
3
•2•
6
3
=
2
点评:本题考查利用辅助角公式、二倍角公式化简函数,考查正弦定理,考查三角形面积的计算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆M、抛物线N的焦点均在x轴上的,且M的中心和M的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求M,N的标准方程;
(Ⅱ)已知定点A(1,
1
2
),过原点O作直线l交椭圆M于B,C两点,求△ABC面积的最大值和此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A、B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)求证:以AB为直径的圆过原点;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=af(x)+f′(x),
(1)求g(x)的单调区间;
(2)当a=1时,
    ①比较g(x)与g(
1
x
)
的大小;
    ②是否存在x0>0,使得|g(x)-g(x0)|<
1
x
对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=
x
-
1
x

(Ⅰ)当x≥1时,求f(x)-g(x)的最大值;
(Ⅱ)求证:
x
x-1
lnx
x+1
2
,?x>1恒成立;
(Ⅲ)求证:
n2
2
+
3n
8
n
k=1
1
ln
2k+1
2k-1
n2
2
+
n
2
(n≥2,n∈N).(参考数据:ln3≈1.1,ln5≈1.6)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=x2,直线l:x-2y-2=0,点P是直线l上任意一点,过点P作抛物线C的切线PM,PN,切点分别为M,N,直线PM,PN斜率分别为k1,k2,如图所示
(1)若P(4,1),求证:k1+k2=16;
(2)若MN过抛物线的焦点,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-1|.若f(a)=2a,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记曲线y=x2与y=
x
围成的区域为D,若利用计算机产生(0,1)内的两个均匀随机数x,y,则点(x,y)恰好落在区域D内的概率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l与双曲线
x2
2
-y2=1
的同一支相交于A,B两点,线段AB的中点在直线y=2x上,则直线AB的斜率为(  )
A、4
B、2
C、
1
2
D、
1
4

查看答案和解析>>

同步练习册答案