精英家教网 > 高中数学 > 题目详情
5.在△ABC中,D,E分别是BC,AC的中点.M为AD与BE的交点,求证:点M分别将线段AD,BE分成2:1的两部分.(要求用向量方法.)

分析 设$\overrightarrow{AM}=x\overrightarrow{AD}$,$\overrightarrow{BM}=y\overrightarrow{BE}$,由已知条件利用平面向量基本定理得x=y=$\frac{2}{3}$,由此能证明点M分别将线段AD,BE分成2:1的两部分.

解答 解:如图,设$\overrightarrow{AM}=x\overrightarrow{AD}$,$\overrightarrow{BM}=y\overrightarrow{BE}$,
∵D是BC的中点,
∴$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,∴$\overrightarrow{AM}=\frac{x}{2}\overrightarrow{AB}+\frac{x}{2}\overrightarrow{AC}$,
又E为AC的中点,∴$\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}$=-$\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,
∴$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}$=$\overrightarrow{AB}+y\overrightarrow{BE}$=$\overrightarrow{AB}+y(-\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC})$
=(1-y)$\overrightarrow{AB}+\frac{y}{2}\overrightarrow{AC}$,
∵$\overrightarrow{AB},\overrightarrow{AC}$不共线,由平面向量基本定理得:
$\left\{\begin{array}{l}{\frac{x}{2}=1-y}\\{\frac{x}{2}=\frac{y}{2}}\end{array}\right.$,解得x=y=$\frac{2}{3}$,
∴$\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AD}$,$\overrightarrow{BM}=\frac{2}{3}\overrightarrow{BE}$,即$\overrightarrow{AM}=2\overrightarrow{MD}$,$\overrightarrow{BM}=2\overrightarrow{ME}$,
∴点M分别将线段AD,BE分成2:1的两部分.

点评 本题考查点分别将两线段分成2:1的两部分的证明,是中档题,解题时要认真审题,注意向量法和平面向量基本定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知曲线y=-$\frac{1}{3}$x3+2与曲线y=4x2-1在x=x0处的切线互相垂直,则x0的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在[-2,2]上的偶函数f(x),当x≥0时,f(x)为减函数,若f(1-m)<f(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一辆价值30万元的汽车,按每年20%的折旧率折旧,设x年后汽车价值y万元,则y与x的函数解析式为(  )
A.y=30×0.2xB.y=30×0.8xC.y=30×1.2xD.y=20×0.3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.定义在R上的奇函数f(x),对任意a,b∈R,a+b≠0,都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)试证明f(x)为R上的增函数;
(2)若不等式f(kx2-6)+f(k-2x)<0在k∈[-1,1]上恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.动点M与定点F(-1,0)的距离和它到定直线x=-4的距离的比是$\frac{1}{2}$,则点M的轨迹方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=$\left\{\begin{array}{l}{x{e}^{-{x}^{2}},x≥0}\\{\frac{1}{1+cosx},-1<x<0}\end{array}\right.$,求${∫}_{1}^{4}$f(x-2)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,与$\overrightarrow{DA}$是平行向量的有(  )
A.$\overrightarrow{CB}$B.$\overrightarrow{DB}$C.$\overrightarrow{BA}$D.$\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AB=2$\sqrt{3}$,AA1=2,点D是AB的中点.
(Ⅰ)求证:CD⊥A1ABB1
(Ⅱ)求证:AC1∥平面CDB1
(Ⅲ)求异面直线AC1与B1C所成角的余弦值.

查看答案和解析>>

同步练习册答案