分析 对于分段求定积分函数可采取分段积分的办法,而且${∫}_{1}^{4}$f(x-2)dx=${∫}_{-1}^{2}f(x)dx$
解答 解:当x∈[1,4]时,x-2∈[-1,2],所以,
${∫}_{1}^{4}$f(x-2)dx=${∫}_{-1}^{2}f(x)dx$=${∫}_{-1}^{0}$$\frac{1}{1+cosx}$dx+${∫}_{0}^{2}$$x{e}^{-x^2}$dx,其中,
${∫}_{-1}^{0}$$\frac{1}{1+cosx}$dx=${∫}_{-1}^{0}$$\frac{1}{2cos^2(\frac{x}{2})}$dx=${∫}_{-1}^{0}$$\frac{1}{cos^2(\frac{x}{2})}d(\frac{x}{2})$=tan$\frac{x}{2}$${|}_{-1}^{0}$=tan$\frac{1}{2}$,
${∫}_{0}^{2}$$x{e}^{-x^2}$dx=(-$\frac{1}{2}$${e}^{-x^2}$)${|}_{0}^{2}$=$\frac{1}{2}$(1-$\frac{1}{e^4}$),
所以,${∫}_{1}^{4}$f(x-2)dx=tan$\frac{1}{2}$+$\frac{1}{2}$(1-$\frac{1}{e^4}$).
点评 本题主要考查了定积分的运算,并采取了分段函数的定积分可分段积分的方法运算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {y|-1≤y≤3} | B. | {y|0≤y≤3} | C. | {0,1,2,3} | D. | {-1,0,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com