分析 (1)由条件得出sinA=sin(C+$\frac{π}{2}$)=cosC=2sinC,结合sin2C+cos2C=1求cosC的值;
(2)当b=1时,由余弦定理求c.
解答 解:(1)A-C=$\frac{π}{2}$,则A=C+$\frac{π}{2}$,
a=2c,由正弦定理得sinA=2sinC,
∴sinA=sin(C+$\frac{π}{2}$)=cosC=2sinC①
又sin2C+cos2C=1②,
由①②得cosC=±$\frac{2\sqrt{5}}{5}$,
根据条件得cosC=$\frac{2\sqrt{5}}{5}$;
(2)由余弦定理c2=a2+1-2a•$\frac{2\sqrt{5}}{5}$,
∴c2=4c2+1-4c•$\frac{2\sqrt{5}}{5}$,
∴3c2-$\frac{8\sqrt{5}}{5}$c+1=0,
∴c=$\frac{\sqrt{5}}{3}$(小角对小边).
点评 本题考查正弦定理、余弦定理的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)的图象关于直线$x=-\frac{π}{6}$ 对称 | B. | f(x)的图象关于点$(\frac{π}{12},0)$对称 | ||
| C. | f(x) 在$[-\frac{π}{2},-\frac{π}{3}]$ 上是增函数 | D. | f(x) 在$[\frac{4π}{3},\frac{3π}{2}]$ 上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60° | B. | 30° | C. | 120° | D. | 60°或120° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{CB}$ | B. | $\overrightarrow{DB}$ | C. | $\overrightarrow{BA}$ | D. | $\overrightarrow{OB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{5}{2}$,1) | B. | (-∞,-$\frac{5}{2}$),(1,+∞) | C. | (1,+∞) | D. | (0,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com