精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C所对的边为a,b,c,已知a=2c,且A-C=$\frac{π}{2}$.
(1)求cosC的值;
(2)当b=1时,求c.

分析 (1)由条件得出sinA=sin(C+$\frac{π}{2}$)=cosC=2sinC,结合sin2C+cos2C=1求cosC的值;
(2)当b=1时,由余弦定理求c.

解答 解:(1)A-C=$\frac{π}{2}$,则A=C+$\frac{π}{2}$,
a=2c,由正弦定理得sinA=2sinC,
∴sinA=sin(C+$\frac{π}{2}$)=cosC=2sinC①
又sin2C+cos2C=1②,
由①②得cosC=±$\frac{2\sqrt{5}}{5}$,
根据条件得cosC=$\frac{2\sqrt{5}}{5}$;
(2)由余弦定理c2=a2+1-2a•$\frac{2\sqrt{5}}{5}$,
∴c2=4c2+1-4c•$\frac{2\sqrt{5}}{5}$,
∴3c2-$\frac{8\sqrt{5}}{5}$c+1=0,
∴c=$\frac{\sqrt{5}}{3}$(小角对小边).

点评 本题考查正弦定理、余弦定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的部分图象如图,且过点$A(\frac{7π}{12},0),B(0,-1)$,则以下结论不正确的是(  )
A.f(x)的图象关于直线$x=-\frac{π}{6}$ 对称B.f(x)的图象关于点$(\frac{π}{12},0)$对称
C.f(x) 在$[-\frac{π}{2},-\frac{π}{3}]$ 上是增函数D.f(x) 在$[\frac{4π}{3},\frac{3π}{2}]$ 上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.定义在R上的奇函数f(x),对任意a,b∈R,a+b≠0,都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)试证明f(x)为R上的增函数;
(2)若不等式f(kx2-6)+f(k-2x)<0在k∈[-1,1]上恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=$\left\{\begin{array}{l}{x{e}^{-{x}^{2}},x≥0}\\{\frac{1}{1+cosx},-1<x<0}\end{array}\right.$,求${∫}_{1}^{4}$f(x-2)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在三棱锥A-BCD中,E,F,G分别是AB,AC,BD的中点,若AD与BC所成的角是60°,那么∠FEG为(  )
A.60°B.30°C.120°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,与$\overrightarrow{DA}$是平行向量的有(  )
A.$\overrightarrow{CB}$B.$\overrightarrow{DB}$C.$\overrightarrow{BA}$D.$\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:tanα=-$\frac{1}{2}$,求$\frac{sinα-2cosα}{3sinα+cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=x2+3x-5lnx,则f(x)的递减区间为(  )
A.(-$\frac{5}{2}$,1)B.(-∞,-$\frac{5}{2}$),(1,+∞)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=cos(2x-$\frac{π}{3}$)在x={x|x=kπ+$\frac{π}{6}$k∈Z}时,取到最大值1.

查看答案和解析>>

同步练习册答案