精英家教网 > 高中数学 > 题目详情
已知abc≠0,且a+b+c=a2+b2+c2=2,则代数式
(1-a)2
bc
+
(1-b)2
ca
+
(1-c)2
ab
的值为多少?
考点:综合法与分析法(选修)
专题:综合法
分析:分析不等式
(1-a)2
bc
+
(1-b)2
ca
+
(1-c)2
ab
的特点,设f(x)=(x-a)•(x-b)•(x-c)+abc,用f(x)表达出来,再结合已知条件解题.
解答: 解:∵(a+b+c)2=a2+b2+c2+2(ab+ac+bc),且a+b+c=a2+b2+c2=2,
∴ab+ac+bc=1,
∴bc=1-a(b+c),而b+c=2-a,
∴bc=1-a(2-a)=(1-a)2
(1-a)2
bc
=1,
同理可证,
(1-b)2
ac
=1,
(1-c)2
ab
=1,
(1-a)2
bc
+
(1-b)2
ca
+
(1-c)2
ab

=
f(a)
abc
+
f(b)
abc
+
f(c)
abc

=1+1+1
=3.
点评:本题主要考察了数学思想中的综合法与分析法,难度较大,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|lnx|,若
1
c
>a>b>1,则f(a),f(b),f(c)比较大小关系正确的是(  )
A、f(c)>f(b)>f(a)
B、f(b)>f(c)>f(a)
C、f(c)>f(a)>f(b)
D、f(b)>f(a)>f(c)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个算法的程序框图如图所示,若执行该程序输出的结果为
99
100
,则判断框中应填入的条件是(  )
A、i≤98?
B、i≤99?
C、i≤100?
D、i≤101?

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图程序框图,输出的结果s的值为(  )
A、0
B、
3
2
C、
3
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

质监部门对一批产品进行质检,已知样品中有合格品7件,次品3件.
(Ⅰ)若对样品进行逐个检测,求连续检测到三件次品的概率;
(Ⅱ)若从样品中一次抽取3件产品进行检测,求检测到次品数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一条河的两岸平行,河的宽度d=500m,一艘船从A处出发到河对岸,已知船的静水速度
v1
=10km/h,水流速度
v2
=2km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论:
(1)当船逆流行驶,与水流成钝角时;
(2)当船顺流行驶,与水流成锐角时;
(3)当船垂直于对岸行驶,与水流成直角时.
请计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(sinx+cosx)2+2
3
sin2x.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|-
9
x
+a,x∈[1,6],a∈R.
(1)若a=1,试判断并用定义证明函数f(x)的单调性;
(2)当a∈(1,3)时,求证函数f(x)存在反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级.某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.

(1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;
(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场中有2人10分,3人9分,从这5人中随机抽取2人,求2人成绩之和为19分的概率.

查看答案和解析>>

同步练习册答案