精英家教网 > 高中数学 > 题目详情
双曲线4x2-9y2=36上一点P,与两焦点F1F2构成△PF1F2,则△PF1F2的内切圆与边F1F2的切点N的坐标为
 
考点:直线与圆锥曲线的关系
专题:计算题,圆锥曲线的定义、性质与方程
分析:将内切圆的圆心坐标进行转化成圆与横轴切点N的横坐标,由圆的切线性质|PF1-PF2|=|FIM-F2Q|=|F1N-F2N|=6,由于F1N+F2N=F1F2=2c,即可解出ON.
解答: 解:双曲线4x2-9y2=36即为
x2
9
-
y2
4
=1,
设△PF1F2的内切圆与边F1F2的切点N,与边PF1的切点为M,与边PF2上的切点为Q,
则△PF1F2的内切圆的圆心的横坐标与N的横坐标相同.
由双曲线的定义,|PF1-PF2|=2a=6.
由圆的切线性质|PF1-PF2|=|FIM-F2Q|=|F1N-F2N|=6,
∵F1N+F2N=F1F2=2c=2
13
,∴F2N=3+
13
,或-3+
13
,ON=3,
即N的横坐标为±3.
故答案为:(3,0)或(-3,0).
点评:本题考查双曲线的方程和定义及性质,巧妙地借助于圆的切线的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的面积为S,且
AB
AC
=S
(1)求tanA的值;
(2)若B=
π
4
,c=3,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x-
1
x
,若对于任意的x1,x2∈[2,3],都有|f(x1)-f(x2)|≤a成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2
2
,则直线l的斜率的取值范围是(  )
A、[2-
3
,1]
B、[2-
3
,2+
3
]
C、[
3
3
3
]
D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,对于任意的x∈R,都满足f(-x)=f(x),且对于任意的a,b∈(-∞,0],当a≠b时,都有
f(a)-f(b)
a-b
<0
<0.若f(m+1)<f(2),则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列 {an}中,an>0(n∈N+),a1a3=4,且 a3+1是 a2和 a4的等差中项,若bn=log2an+1
(Ⅰ)求数列 {bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或x≥6},B={x|-3≤x≤5}
(Ⅰ)求∁RA;A∪B;
(Ⅱ)若C={x|x>a},且B∩C=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=10x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线(  )
A、有且仅有一条
B、有且仅有两条
C、有无穷多条
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

在等腰△ABC中,∠BAC=120°,AB=AC=2,
BC
=2
BD
AC
=3
AE
,则
AD
BE
的值为
 

查看答案和解析>>

同步练习册答案