精英家教网 > 高中数学 > 题目详情

若对满足条件的正实数都有恒成立,则实数a的取值范围为             .

 

【答案】

【解析】

试题分析:设,则,∴,∴(舍),不等式化为:,∴.

考点:1.基本不等式;2.恒成立问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足:①对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;②当x∈(1,2]时,f(x)=2-x.若f(a)=f(2020),则满足条件的最小的正实数a是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设单调递增函数f(x)的定义域为(0,+∞),且对任意的正实数x,y有f(xy)=f(x)+f(y),且f(
1
2
)=-1

(1)一个各项均为正数的数列{an}满足:f(sn)=f(an)+f(an+1)-1其中Sn为数列{an}的前n项和,求数列{an}的通项公式;
(2)在(1)的条件下,是否存在正数M使下列不等式:2n•a1a2…an≥M
2n+1
(2a1-1)(2a2-1)…(2an-1)
对一切n∈N*成立?若存在,求出M的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y满足x+y+3=xy,若对任意满足条件的x,y,都有(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围为
(-∞,
37
6
]
(-∞,
37
6
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在区间D上的函数,若对任何实数α∈(0,1)以及D中的任意两个实数x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数f1(x)=x2,f2=
1x
(x<0)
是否为各自定义域上的C函数,并说明理由;
(Ⅱ)已知f(x)是R上的C函数,m是给定的正整数,设an=fn,n=0,1,2,…,m,且a0=0,am=2m.记Sf=a1+a2+…+am对于满足条件的任意函数f(x),试求Sf的最大值;
(Ⅲ)若g(x)是定义域为R的函数,且最小正周期为T,试证明g(x)不是R上的C函数.

查看答案和解析>>

同步练习册答案