精英家教网 > 高中数学 > 题目详情
设f(x)是定义在区间D上的函数,若对任何实数α∈(0,1)以及D中的任意两个实数x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数f1(x)=x2,f2=
1x
(x<0)
是否为各自定义域上的C函数,并说明理由;
(Ⅱ)已知f(x)是R上的C函数,m是给定的正整数,设an=fn,n=0,1,2,…,m,且a0=0,am=2m.记Sf=a1+a2+…+am对于满足条件的任意函数f(x),试求Sf的最大值;
(Ⅲ)若g(x)是定义域为R的函数,且最小正周期为T,试证明g(x)不是R上的C函数.
分析:(Ⅰ)f1(x)=x2是C函数,直接找f(αx1+(1-α)x2)-αf(x1)-(1-α)f(x2),推出其小于等于0即可; f2(x)=
1
x
(x<0)
不是C函数,采用举反例的方法即可,x1=-3,x2=-1,α=
1
2

(Ⅱ)先根据定义求出an=f(n)的范围,再结合定义即可求出Sf的最大值即可.
 (Ⅲ)假设g(x)是R上的C函数.若存在m<n且m,n∈[0,T]使得g(m)≠g(n).分g(m)<g(n),g(m)>g(n),利用反证法,可以证明g(x)不是R上的C函数.
解答:解:(Ⅰ):f1(x)=x2是C函数,证明如下:
对任意实数x1,x2及α∈(0,1),
有f(αx1+(1-α)x2)-αf(x1)-(1-α)f(x2)=(αx1+(1-α)x22-αx12-(1-α)x22=-α(1-α)x12-α(1-α)x22+2α(1-α)x1x2=-α(1-α)(x1-x22≤0.
即f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2).
∴f1(x)=x2是C函数.
f2(x)=
1
x
(x<0)
不是C函数,证明如下:
取x1=-3,x2=-1,α=
1
2

则f(αx1+(1-α)x2)-αf(x1)-(1-α)f(x2)=f(-2)-
1
2
f(-3)-
1
2
f(-1)=-
1
2
+
1
6
+
1
2
>0

即f(αx1+(1-α)x2)>αf(x1)+(1-α)f(x2).
f2(x)=
1
x
(x<0)
不是C函数.
(Ⅱ)对任意0≤n≤m,取x1=m,x2=0,α=
n
m
∈[0,1]

∵f(x)是R上的下凸函数,an=f(n),且a0=0,am=2m
∴an=f(n)=f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)=
n
m
×2m=2n

那么Sf=a1+a2+…+am≤2×(1+2+…+m)=m2+m.
可证f(x)=2x是C函数,且使得an=2n(n=0,1,2,…,m)都成立,此时Sf=m2+m.
综上所述,Sf的最大值为m2+m.
(Ⅲ)假设g(x)是R上的C函数.
若存在m<n且m,n∈[0,T]使得g(m)≠g(n).
若g(m)<g(n),记x1=m,x2=m+T,α=1-
n-m
T
,则0<α<1,且n=αx1+(1-α)x2
那么g(n)=g[αx1+(1-α)x2]≤αg(x1)+(1-α)g(x2)=g(m)
这与g(m)<g(n)矛盾.
若g(m)>g(n),
x1=n,x2=n-T,α=1-
n-m
T
也可得到矛盾.
∴g(x)在[0,T]上是常数函数,又因为g(x)是周期为T的函数,所以g(x)在R上是常数函数,这与g(x)的最小正周期为T矛盾.
所以g(x)不是R上的C函数. (14分)
点评:本题主要是在新定义下考查恒成立问题.恒成立问题一般有两种情况,一是f(x)>a恒成立,只须比f(x)的最小值小即可,二是f(x)<a恒成立,只须比f(x)的最大值大即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•松江区一模)设f(x)是定义在R上的函数,对x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且当x∈[-2,0]时,f(x)=(
1
2
)x-1
,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天河区三模)设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=Inx+
b+2x+1
(x>1)
,其中b为实数.
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数.当x∈[0,π]时,0<f(x)<1;当x∈(0,π)且x≠
π
2
时,(x-
π
2
)f′(x)<0
.则函数y=f(x)-cosx在[-3π,3π]上的零点个数为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1),f(x)=log
1
2
(1-x)
,则函数f(x)在(1,2)上的解析式是
y=log
1
2
(x-1)
y=log
1
2
(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:013

(天津六区联考模拟)f(x)是定义在R上的单调递减的奇函数,若,则

[  ]

A

B

C

D

查看答案和解析>>

同步练习册答案