精英家教网 > 高中数学 > 题目详情
19.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(1)求证:PC⊥AD;
(2)求直线MD与平面ABCD所成角的余弦值.

分析 (1)取AD的中点O,连结OP,OC,证明AD⊥平面OPC即可得出PC⊥AD;
(2)取OC的中点N,连结MN,DN,可证MN⊥平面ABCD,故而∠MDN为DM与平面ABCD所成的角,利用勾股定理计算DN,DM得出cos∠MDN.

解答 解:(1)取AD的中点O,连结OP,OC,
∵底面ABCD是∠ABC=60°的菱形,
∴△ACD是等边三角形,
又侧面PAD是边长为2的正三角形,O为AD的中点,
∴OP⊥AD,OC⊥AD,
又OP?平面OPC,OC?平面OPC,OP∩OC=O,
∴AD⊥平面OPC,又PC?平面OPC,
∴AD⊥PC.
(2)取OC的中点N,连结MN,DN,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,OP⊥AD,
∴OP⊥平面ABCD,
∵M,N分别是PC,OC的中点,
∴MN∥PO,
∴MN⊥平面ABCD,
∴∠MDN为DM与平面ABCD所成的角,
∵△APD,△ACD是边长为2的等边三角形,
∴OC=OP=$\sqrt{3}$,OD=1,∴MN=ON=$\frac{\sqrt{3}}{2}$,
∴DN=$\sqrt{O{N}^{2}+O{D}^{2}}$=$\frac{\sqrt{7}}{2}$,∴DM=$\sqrt{M{N}^{2}+D{N}^{2}}$=$\frac{\sqrt{10}}{2}$.
∴cos∠MDN=$\frac{DN}{DM}$=$\frac{\sqrt{70}}{10}$.

点评 本题考查了线面垂直的判定与性质,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.不等式(x-2y+1)(x+y-3)<0表示的区域为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)是定义在R上的奇函数,且满足f(x+2)=-$\frac{1}{f(x)}$,当1≤x≤2时,f(x)=x,则f(-$\frac{11}{2}$)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.自极点O任意作一条射线与直线ρcosθ=3相交于点M,在射线OM上取点P,使得OM•OP=12,求动点P的极坐标方程,并把它化为直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A满足条件:当p∈A时,总有$\frac{-1}{p+1}$∈A(p≠0且p≠-1),已知2∈A,则集合A的子集的个数至少为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内,复数$\frac{3i-1}{1+3i}$对应的点的坐标为(  )
A.($\frac{4}{5}$,$\frac{3}{5}$)B.(-1,$\frac{3}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)D.($\frac{3}{5}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知复数z=1-$\sqrt{3}$i(其中i是虚数单位)($\overline{z}$)2+az=0,则实数a=2;|z+a|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集集U=R,集合M={x|-2≤x≤2},$N=\{\left.x\right|y=\sqrt{1-x}\}$,那么M∪N=(-∞,2],M∩N=[-2,1],∁UN=(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知角α终边上一点P(2m,1),且$sinα=\frac{1}{3}$.
(1)求实数m的值;
(2)求tanα的值.

查看答案和解析>>

同步练习册答案