精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=2+log${\;}_{\frac{1}{2}}$x.
(I)请画出函数的草图;
(Ⅱ)当x=$\frac{1}{4}$时,求f(x)的值;
(Ⅲ)当-1<f(x)≤3时,求x的取值范围.

分析 (I)根据对数函数的图象和性质,结合函数图象的平移变换,可得函数f(x)=2+log${\;}_{\frac{1}{2}}$x的草图;
(Ⅱ)将x=$\frac{1}{4}$代入,可得答案;
(Ⅲ)当-1<f(x)≤3时,-1<2+log${\;}_{\frac{1}{2}}$x≤3,解得答案.

解答 解:(I)函数f(x)=2+log${\;}_{\frac{1}{2}}$x的草图如下图所示:

(Ⅱ)当x=$\frac{1}{4}$时,f($\frac{1}{4}$)=2+log${\;}_{\frac{1}{2}}$$\frac{1}{4}$=4.
(Ⅲ)当-1<f(x)≤3时,-1<2+log${\;}_{\frac{1}{2}}$x≤3,
即-3<log${\;}_{\frac{1}{2}}$x≤1,
即$\frac{1}{2}$≤x<8.

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知直线l:kx-y+1+2k=0.(k∈R).
(1)若直线l不经过第四象限,求k的取值范围;
(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=$\frac{1}{2}$,则下列结论中正确的序号是①②③.
①AC⊥BE  ②EF∥平面ABCD ③三棱锥A-BEF的体积为定值
④△AEF的面积与△BEF的面积相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知2sinα-cosα=0,求值:
(1)$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$;  
(2)$\frac{{1+{{sin}^2}α}}{{{{cos}^2}α-sinαcosα}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\sqrt{3}sin(π-x)cos(-x)+sin(π+x)cos(\frac{π}{2}-x)$图象上的一个最低点为A,离A最近的两个最高点分别为B与C,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.$9+\frac{π^2}{9}$B.$9-\frac{π^2}{9}$C.$4+\frac{π^2}{4}$D.$4-\frac{π^2}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(学法反思总结题)
结合平时学习体会,请回答以下问题:
(1)你认为求二面角常用的方法有哪些?请按应用的重要程度写出3种,并就其中一种方法谈谈它的应用条件;
(2)在解决数学题目时会经常遇到陌生难题,对这些陌生难题的解决往往不知所措,实际上对这些陌生难题的解决方法往往都是通过分析将其转化成为若干常见的基本问题加以解决,也就是我们教师常说的:所谓的难题都是由若干基本题拼凑而成的.请你结合对立体几何问题的解决体会,谈谈对于一个陌生的立体几何难题经常采取哪些策略方法可将其转化为若干常见问题的,要求写出3种策略.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,经过圆上的点T的切线和弦AB的延长线相交于点C,求证:∠ATC=∠TBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆的焦点为F1(0,-1),F2(0,1),且经过点M($\frac{7}{4}$,$\frac{3\sqrt{2}}{2}$),则椭圆的方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1B.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1C.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{8}$=1D.$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)与双曲线C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>0,b2>0)有相同的焦点F1,F2,设椭圆的离心率为e1,双曲线的离心率为e2,O为坐标原点,P是两曲线的公共点,且∠F1PF2=60°,则$\frac{{e}_{1}{e}_{2}}{\sqrt{3{{e}_{1}}^{2}+{{e}_{2}}^{2}}}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案