精英家教网 > 高中数学 > 题目详情
log3
3
=(  )
A、1
B、
1
2
C、-
1
2
D、-2
考点:对数的运算性质
专题:计算题
分析:根据导数的运算性质,求出即可.
解答: 解:
log
3
3
=
log
3
1
2
3
=
1
2

故选:B.
点评:本题考查了对数的运算,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}、{bn}满足a1=1,且an,an+1是函数f(x)=x2-bnx+2n的两个零点,则b10等于(  )
A、24B、32C、48D、64

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的偶函数,且在[0,+∞)上递减,若f(
1
2
)=0,若f(log 
1
4
x)>0,那么x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,设A(3,2),B(-2,-3),沿y轴把坐标平面折成120°的二面角后,AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将两个全等的30°的直角三角形ABC和直角三角形ADC拼在一起组成平面四边形ABCD,若
DB
=x
DA
+y
DC
,则x,y分别等于(  )
A、
3
2
3
2
B、
3
2
1
2
C、
3
2
3
2
D、
1
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x),f(
1
2
)=4
,对任意实数x,y满足:f(x+y)=f(x)+f(y)-3
(Ⅰ)当n∈N*时求f(n)的表达式;
(Ⅱ)若b1=1,bn+1=
bn
1+bn•f(n-1)
(n∈N*)
,求bn
(Ⅲ)记c n=
4bn
(n∈N*)
,试证c1+c2+…+c2014<89.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=cos
2n
3
π+sin
2n
3
π,n∈N+
,则a1+a2+a3+…+a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
e
0
π(lnx)2dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(2+x),g(x)=loga(2-x),a>0且a≠1且设h(x)=f(x)-g(x).
(Ⅰ)求函数h(x)的定义域;
(Ⅱ)判断h(x)的奇偶性,并加以证明;
(Ⅲ)当f(x)>g(x)时,求x的取值范围.

查看答案和解析>>

同步练习册答案