精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*
(1)若数列{an} 满足
1
an+1
=f′(
1
an
)
,且a1=4,求数列{an} 的通项公式;
(2)若数列{bn}满足:b1=1,bnbn+1=
1
2
an+1
,当n≥3,n∈N*时,求证:①b2nb2n+1b2n-1(n∈N*);②b1+b2+b3+…bn
2n+1
-1
(1)求导函数可得f′(x)=2ax+b,由题意知b=2n,16n2a-4nb=0
∴a=
1
2
,b=2n,则f(x)=
1
2
x2+2nx,n∈N*.             (2分)
∵数列{an} 满足
1
an+1
=f′(
1
an
)
,f′(x)=x+2n,
1
an+1
=
1
an
+2n
,∴
1
an+1
-
1
an
=2n

∵a1=4,
1
an+1
-
1
4
=2+4+…+2(n-1)=n2-n

1
an
=(n-
1
2
)2

an=
4
(2n-1)2
   (6分)
(2)证明:①由b1=1得b2=
1
3
,由bnbn+1=
1
2
an+1
=
1
2n+1
bnbn+1
bn+2bn+1
=
2n+3
2n+1

bn+2
bn
=
2n+1
2n+3
,∴
b2n+1
b2n-1
=
4n-1
4n+1
<1
,∴b2n+1<b2n-1
bn+2
bn
=
2n+1
2n+3
及b1=1,b2=
1
3
可得:b2n=
1
3
5
7
•…•
4n-3
4n-1
b2n+1=
3
5
7
9
•…•
4n-1
4n+1

4n-3
4n-1
4n-1
4n+1
,∴b2n<b2n+1(10分)
②由bnbn+1=
1
2
an+1
=
1
2n+1
1
bnbn+1
=2n+1,
1
bn+2bn+1
=2n+3

相减得bn+1=
1
2
(
1
bn+2
-
1
bn
)

由①知:bn≠bn+1
所以b1+b2+b3+…bn=1+
1
2
(
1
b3
-
1
b1
+
1
b4
-
1
b2
+…
1
bn+1
-
1
bn-1
)
=1+
1
2
(-
1
b1
-
1
b2
+
1
bn+1
+
1
bn
)
=-1+
1
2
(
1
bn+1
+
1
bn
)
>-1+
1
bn+1
1
bn
=
2n+1
-1
(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案