精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(1)求证:DE平面PBC;
(2)求证:AB⊥PE;
(3)求二面角A-PB-E的大小.
(Ⅰ)∵D、E分别为AB、AC中点,
∴DEBC.
∵DE?平面PBC,BC?平面PBC,
∴DE平面PBC.…(4分)
(Ⅱ)连接PD,
∵PA=PB,D为AB中点,
∴PD⊥AB.….(5分)
∵DEBC,BC⊥AB,
∴DE⊥AB…(6分)
又∵PD∩DE=D,PD,DE?平面PDE
∴AB⊥平面PDE…(8分)
∵PE?平面PDE,
∴AB⊥PE…(9分)
(Ⅲ)∵AB⊥平面PDE,DE⊥AB…(10分)
如图,以D为原点建立空间直角坐标系,由PA=PB=AB=2,BC=3,
则B(1,0,0),P(0,0,
3
),E(0,
3
2
,0),
PB
=(1,0,-
3
),
PE
=(0,
3
2
-
3
).
设平面PBE的法向量
n1
=(x,y,z)

x-
3
z=0
3
2
y-
3
z=0

z=
3

n1
=(3,2,
3
)
…(11分)
∵DE⊥平面PAB,
∴平面PAB的法向量为
n2
=(0,1,0)
.…(12分)
设二面角的A-PB-E大小为θ,
由图知,cosθ=cos<
n1
n2
>=
|
n1
n2
|
|
n1
|•|
n2
|
=
1
2

所以θ=60°,
即二面角的A-PB-E大小为60°…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABCA1B1C1的底面ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求
BN
的模;
(2)求异面直线BA1与CB1所成角的余弦值;
(3)求证:A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC,AB⊥AC,点D是BC上一点,且AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)求证:A1B平面ADC1
(3)求二面角C-AC1-D大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,F是PD的中点,E是线段AB上的点.
(Ⅰ)当E是AB的中点时,求证:AF平面PEC;
(Ⅱ)要使二面角P-EC-D的大小为45°,试确定E点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.ABCD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)求直线EC与平面ABE所成角的正弦值;
(Ⅲ)线段EA上是否存在点F,使EC平面FBD?若存在,求出
EF
EA
;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方形ABCD的边长为1,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=1,得到三棱锥A-BCD,如图所示.
(Ⅰ)若点M是棱AB的中点,求证:OM平面ACD;
(Ⅱ)求证:AO⊥平面BCD;
(Ⅲ)求二面角A-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,向量,则     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面向量, 且, 则 (     )
A.B.C.D.

查看答案和解析>>

同步练习册答案