精英家教网 > 高中数学 > 题目详情
已知正方形ABCD的边长为1,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=1,得到三棱锥A-BCD,如图所示.
(Ⅰ)若点M是棱AB的中点,求证:OM平面ACD;
(Ⅱ)求证:AO⊥平面BCD;
(Ⅲ)求二面角A-BC-D的余弦值.
(I)证明:∵在正方形ABCD中,O是对角线AC、BD的交点,
∴O为BD的中点,
又M为AB的中点,
∴OMAD.
又AD?平面ACD,OM?平面ACD,
∴OM平面ACD.
证明:(II)在△AOC中,∵AC=1,AO=CO=
2
2

∴AC2=AO2+CO2,∴AO⊥CO.
又∵AC、BD是正方形ABCD的对角线,
∴AO⊥BD,
又BD∩CO=O
∴AO⊥平面BCD.
(III)由(II)知AO⊥平面BCD,则OC,OA,OD两两互相垂直,
如图,以O为原点,建立空间直角坐标系O-xyz.
O(0,0,0),A(0,0,
2
2
),C(
2
2
,0,0),B(0,-
2
2
,0),D(0,
2
2
,0)

OA
=(0,0,
2
2
)
是平面BCD的一个法向量.
AC
=(
2
2
,0,-
2
2
)
BC
=(
2
2
2
2
,0)

设平面ABC的法向量
n
=(x,y,z)

n
BC
=0
n
AC
=0

(x,y,z)•(
2
2
2
2
,0)=0
(x,y,z)•(
2
2
,0,-
2
2
)=0

所以y=-x,且z=x,令x=1,则y=-1,z=1,
解得
n
=(1,-1,1)


从而cos?
n
OA
>=
n
OA
|
n
||
OA
|
=
3
3

二面角A-BC-D的余弦值为
3
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.
(1)求证:AE⊥平面A1BD;
(2)求二面角D-BA1-A的大小(用反三角函数表示)
(3)求点B1到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1.
( I)求二面角C-DE-C1的正切值;( II)求直线EC1与FD1所成的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(1)求证:DE平面PBC;
(2)求证:AB⊥PE;
(3)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个多面体的直观图及三视图分别如图1和图2所示(其中正视图和侧视图均为矩形,俯视图是直角三角形),M、N分别是AB1、A1C1的中点,MN⊥AB1


(Ⅰ)求实数a的值并证明MN平面BCC1B1
(Ⅱ)在上面结论下,求平面AB1C1与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,CA⊥CB,CA=CB=1,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求证:C1N⊥平面BCN;
(2)求直线B1C与平面C1MN所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两个非零向量a与b,定义|a×b|=|a|·|b|sin θ,其中θ为a与b的夹角.若a=(-3,4),b=(0,2),则|a×b|的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

中,,向量的终点的内部(不含边界),则实数的取值范围是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在四边形中,的中点,且,则      .

查看答案和解析>>

同步练习册答案