精英家教网 > 高中数学 > 题目详情
甲、乙二人进行射击比赛.甲先射击,乙后射击,二人轮流进行.已知甲每次击中目标的概率为
2
3
,乙每次击中目标的概率为
1
2
,若某人射击时出现连续两次不中则被停止射击,或若两人均未出现连续不中,则各射击5次后比赛也停止.
(Ⅰ)求甲恰在第三次射击后停止比赛而乙尚未停止比赛的概率.
(Ⅱ)求甲停止比赛时,甲所进行的比赛次数ξ的数学期望.
(Ⅰ)记“甲恰在第二次射击后停止比赛布乙尚未停止比赛”为事件A,
则P(A)=
2
3
•(1-
2
3
)2
(1-
1
2
1
2
)
=
1
18

(Ⅱ)由题设知ξ的可能取值为2,3,4,5,
P(ξ=2)=
1
3
1
3
=
1
9

P(ξ=3)=
2
3
1
3
1
3
=
2
27

P(ξ=4)=
2
3
2
3
1
3
1
3
+
1
3
2
3
1
3
1
3
=
2
27

P(ξ=5)=
C14
(
2
3
)
3
1
3
+3•(
2
3
)
2
(
1
3
)
2
+(
2
3
)
4
=
20
27

∴ξ的分布列为:
 ξ  2  3  4  5
 P  
1
9
 
2
27
 
2
27
 
20
27
故Eξ=
1
9
+
2
27
+
2
27
+
20
27
=
40
9
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲乙二人进行射击练习,甲每次击中目标的概率为
1
2
,乙每次击中目标的概率为
2
3

(1)若甲乙各射击3次,求甲恰好比乙多击中目标2次的概率;
(2)甲乙各射击n次,为使目标被击中的概率大于0.99,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)甲、乙二人进行射击比赛.甲先射击,乙后射击,二人轮流进行.已知甲每次击中目标的概率为
2
3
,乙每次击中目标的概率为
1
2
,若某人射击时出现连续两次不中则被停止射击,或若两人均未出现连续不中,则各射击5次后比赛也停止.
(Ⅰ)求甲恰在第三次射击后停止比赛而乙尚未停止比赛的概率.
(Ⅱ)求甲停止比赛时,甲所进行的比赛次数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙二人进行射击比赛.甲先射击,乙后射击,二人轮流进行.已知甲每次击中目标的概率为数学公式,乙每次击中目标的概率为数学公式,若某人射击时出现连续两次不中则被停止射击,或若两人均未出现连续不中,则各射击5次后比赛也停止.
(Ⅰ)求甲恰在第三次射击后停止比赛而乙尚未停止比赛的概率.
(Ⅱ)求甲停止比赛时,甲所进行的比赛次数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源:2011年四川省遂宁市高考数学二模试卷(理科)(解析版) 题型:解答题

甲、乙二人进行射击比赛.甲先射击,乙后射击,二人轮流进行.已知甲每次击中目标的概率为,乙每次击中目标的概率为,若某人射击时出现连续两次不中则被停止射击,或若两人均未出现连续不中,则各射击5次后比赛也停止.
(Ⅰ)求甲恰在第三次射击后停止比赛而乙尚未停止比赛的概率.
(Ⅱ)求甲停止比赛时,甲所进行的比赛次数ξ的数学期望.

查看答案和解析>>

同步练习册答案