【题目】已知函数
(1)若对任意的,恒成立,求实数的取值范围;
(2)若的最小值为,求实数的值;
(3)若对任意实数、、,均存在以、、为三边边长的三角形,求实数的取值范围.
【答案】(1);(2);(3)
【解析】
(1)问题等价于4x+k2x+1>0恒成立,分离出参数k后转化为求函数的最值问题即可;
(2),令,则,分k>1,k=1,k<1三种情况进行讨论求出f(x)的最小值,令其为﹣3即可解得k值;
(3)由题意得f(x1)+f(x2)>f(x3)对任意x1,x2,x3∈R恒成立,当k=1时易判断;当k>1,k<1时转化为函数的最值问题解决即可,借助(2)问结论易求函数的最值.
(1)因为4x+2x+1>0,所以f(x)>0恒成立,等价于4x+k2x+1>0恒成立,即k>﹣2x﹣2﹣x恒成立,
因为﹣2x﹣2﹣x=﹣(2x+2﹣x)≤﹣2,当且仅当2x=2﹣x,即x=0时取等号,所以k>﹣2.
(2),令,则,
当k>1时,无最小值,舍去;
当k=1时,y=1,最小值不是﹣3,舍去;
当k<1时,,最小值为,解得.
综上所述,k=﹣11.
(3)由题意,f(x1)+f(x2)>f(x3)对任意x1,x2,x3∈R恒成立.
当k>1时,因,且,故,即1<k≤4;
当k=1时,f(x1)=f(x2)=f(x3)=1,满足条件;
当k<1时,,且,故,解得;
综上所述,
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中真命题是( )
(1)在的二项式展开式中,共有项有理项;
(2)若事件、满足,,,则事件、是相互独立事件;
(3)根据最近天某医院新增疑似病例数据,“总体均值为,总体方差为”,可以推测“最近天,该医院每天新增疑似病例不超过人”.
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(是非零实常数)满足且方程有且仅有一个实数解.
(1)求的值
(2)当时,不等式恒成立,求实数的取值范围
(3)在直角坐标系中,求定点到函数图像上的任意一点的距离的最小值,并求取得最小值时的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线(为参数),将曲线上的所有点的横坐标保持不变,纵坐标缩短为原来的后得到曲线;以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线和直线的直角坐标方程;
(2)已知,设直线与曲线交于不同的、两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为,点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M点为圆心,4为半径.
求直线l和圆C的极坐标方程;
直线l与x轴y轴分别交于A,B两点,Q为圆C上一动点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、.经过点且倾斜角为的直线与椭圆交于、两点(其中点在轴上方),的周长为8.
(1)求椭圆的标准方程;
(2)如图,把平面沿轴折起来,使轴正半轴和轴确定的半平面,与负半轴和轴所确定的半平面互相垂直.
①若,求异面直线和所成角的大小;
②若折叠后的周长为,求的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前,中国有三分之二的城市面临“垃圾围城”的窘境. 我国的垃圾处理多采用填埋的方式,占用上万亩土地,并且严重污染环境. 垃圾分类把不易降解的物质分出来,减轻了土地的严重侵蚀,减少了土地流失. 2020年5月1日起,北京市将实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既环保,又节约资源. 如:回收利用1吨废纸可再造出0.8吨好纸,可以挽救17棵大树,少用纯碱240千克,降低造纸的污染排放75%,节省造纸能源消耗40%~50%.
现调查了北京市5个小区12月份的生活垃圾投放情况,其中可回收物中废纸和塑料品的投放量如下表:
小区 | 小区 | 小区 | 小区 | 小区 | |
废纸投放量(吨) | 5 | 5.1 | 5.2 | 4.8 | 4.9 |
塑料品投放量(吨) | 3.5 | 3.6 | 3.7 | 3.4 | 3.3 |
(Ⅰ)从这5个小区中任取1个小区,求该小区12月份的可回收物中,废纸投放量超过5吨且塑料品投放量超过3.5吨的概率;
(Ⅱ)从这5个小区中任取2个小区,记为12月份投放的废纸可再造好纸超过4吨的小区个数,求的分布列及期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com