精英家教网 > 高中数学 > 题目详情

正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则对角线AC与对角线BF对所成角的余弦值是__________。

解析试题分析:在平面ABCD内取点G,H使A,B,G,H构成正方形,对角线AC与对角线BF对所成角为,设正方形边长为1,由余弦定理得
考点:异面直线所成角及二面角
点评:先由已知条件作出二面角与异面直线所成角,而后解三角形求其角的余弦

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

是两条不同的直线,是两个不同的平面,则下列正确命题的序号
     
①.若  , 则   ;      ②.若,则   
③. 若  ,则   ;      ④.若   ,,则  

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,矩形与矩形所在的平面互相垂直,将沿翻折,翻折后的点E恰与BC上的点P重合.设,则当__时,有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正四面体S—ABC中,E为SA的中点,F为的中心,则直线EF与平面ABC所成的角的正切值是                 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为________. 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在正方体中,分别是的中点,则异面直线
所成的角的大小是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;②经过空间一点一定可作一平面与两异面直线都平行;③已知平面,直线,若,则;④四个侧面两两全等的四棱柱为直四棱柱;⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.其中正确命题的序号是      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知两条不同直线,两个不同平面,给出下列命题:
①若垂直于内的两条相交直线,则
②若,则平行于内的所有直线;
③若,则
④若,则
⑤若,则
其中正确命题的序号是                 .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:

②∠BAC=60°;
③三棱锥D—ABC是正三棱锥;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正确的是________(填上正确答案的序号)

查看答案和解析>>

同步练习册答案