精英家教网 > 高中数学 > 题目详情
下列命题中:
(1)方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
(2)函数f(x)=lg(mx2+mx+1)的定义域为R,则m的取值范围是m∈(0,4);
(3)若函数在区间(-∞,1]上是减函数,则实数a∈[-3,-2];
(4)若函数f(3x+1)是偶函数,则f(x)的图象关于直线对称.
(5)若对于任意x∈(1,3)不等式x2-ax+2<0恒成立,则
其中的真命题是    (写出所有真命题的编号).
【答案】分析:(1)用根的分布来解,得到f(0)=a<0;
(2)由函数f(x)=lg(mx2+mx+1)的定义域为R,知mx2+mx+1>0的定义域为R,由此能求出实数m的取值范围;
(3)由定义域得a>-3,由单调性得a<-2,由此能求出实数a的范围;
(4)若函数f(3x+1)是偶函数,则f(x)的图象关于直线x=1对称;
(5)由题意得x2+2<ax对于任意x∈(1,3)恒成立,故x+<a对于任意x∈(1,3)恒成立,由此能求出实数a的取值范围.
解答:解:(1)用根的分布来解,
令f(x)=x2+(a-3)x+a,一个比0大,一个比0小,
只要f(0)=a<0即可.故(1)正确;
(2)∵函数f(x)=lg(mx2+mx+1)的定义域为R,
∴mx2+mx+1>0的定义域为R,
∴m=0,或
解得0≤m<4,故(2)不正确;
(3)∵函数在区间(-∞,1]上是减函数,
,解得-3≤a≤-2,故(3)正确;
(4)∵函数f(3x+1)是偶函数,
∴函数f(3x+1)的图象关于y轴对称,
∴f(3x)的图象关于x=对称,
∴f(x)的图象关于x=1对称,故(4)不正确;
(5)∵对于任意x∈(1,3)不等式x2-ax+2<0恒成立,
∴x2+2<ax对于任意x∈(1,3)恒成立,
∴x+<a对于任意x∈(1,3)恒成立,
∵当x∈(1,3)时,x+∈[2],
∴a,故(5)成立.
故答案为:(1),(3),(5).
点评:本题考查命题的真假判断,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,正确命题的个数为(  )
①命题“若
x-2
+(y+1)2=0
,则x=2且y=-1”的逆命题是真命题;
②P:个位数字为零的整数能被5整除,则?P:个位数字不是零的整数不能被5整除;
③茎叶图中,去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确命题的个数是   (  )
(1)cosα≠0是α≠2kπ+
π
2
(k∈Z)
的充分必要条件;
(2)若a>0,b>0,且
2
a
+
1
b
=1
,则ab≥4;
(3)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
(4)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=
1
2
-p

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的命题有(  )
①用相关系数r来判断两个变量的相关性时,r越接近0,说明两个变量有较强的相关性;
②将一组数据中的每个数据都加上同一个常数后,方差恒不变;
③设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=
1
2
-p

④回归直线一定过样本点的中心(
.
x
.
y
)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的命题有(  )
(1)y=1是幂函数;
(2)用相关指数R2来刻画回归效果,R2越接近0,说明模型的拟合效果越好;
(3)将一组数据中的每个数据都加上或减去一个常数后,方差恒不变;
(4)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=
1
2
-p

(5)回归直线一定过样本中心(
.
x
.
y
)
A、2个B、3个C、4个D、5个

查看答案和解析>>

同步练习册答案