精英家教网 > 高中数学 > 题目详情

已知数列{an},{bn}满足a1=数学公式,an+bn=1,bn+1=数学公式,则b2011=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:由an+bn=1,可求,由bn+1===,把n=1,2,3分别代入可求b2,b3,b4,根据规律猜想通项,然后用数学归纳法进行证明即可
解答:∵an+bn=1,

∴bn+1===
==
猜想:
下用数学归纳法进行证明:
①当n=1时,适合
②假设当n=k时满足条件,即
当n=k+1时,==
综上可得,对于任意正整数n都成立

点评:本题主要考察了利用数列的递推公式求解数列的项,解题的关键是根据前几项的规律归纳出数列的通项及数学归纳法的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案