分析 (1)利用余弦定理和面积公式化简即可得出tanC,
(2)利用面积公式即可求出sinC.使用二倍角公式求出cos2C.
解答 解:(1)∵S═$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$=$\frac{abcosC}{2\sqrt{3}}$=$\frac{1}{2}absinC$,
∴cosC=$\sqrt{3}$sinC,∴tanC=$\frac{sinC}{cosC}$=$\frac{\sqrt{3}}{3}$.
∴C=$\frac{π}{6}$.
(2)∵S=$\frac{1}{2}•BC•AC•sinC$=20sinC=12,
∴sinC=$\frac{3}{5}$.
∴cos2C=1-2sin2C=1-2×$\frac{9}{25}$=$\frac{7}{25}$.
故答案为:$\frac{π}{6}$,$\frac{7}{25}$.
点评 本题考查了余弦定理,三角形的面积公式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最大值为$\sqrt{3}$,无最小值 | B. | 函数f(x)的最小值为-$\sqrt{3}$,最大值为0 | ||
| C. | 函数f(x)的最大值为$\frac{\sqrt{3}}{3}$,无最小值 | D. | 函数f(x)的最小值为-$\sqrt{3}$,无最大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com