精英家教网 > 高中数学 > 题目详情

【题目】已知圆,直线经过点A (1,0).

(1)若直线与圆C相切,求直线的方程;

(2)若直线与圆C相交于PQ两点,求三角形CPQ面积的最大值,并求此时直线的方程.

【答案】(1)(2)yx-1或y=7x-7

【解析】试题分析:(1)由直线与圆相切可得圆心(3,4)到已知直线的距离等于半径2,设直线点斜式方程,列方程可得斜率,最后验证斜率不存在时是否满足条件(2)由垂径定理可得弦长PQ,而三角形的高为圆心到直线的距离d,所以,利用基本不等式求最值可得当d时,S取得最小值2,再根据点到直线距离公式求直线的斜率,即得的方程.

试题解析:(1)①若直线的斜率不存在,则直线,符合题意.

②若直线斜率存在,设直线,即.

由题意知,圆心(3,4)到已知直线的距离等于半径2,

,解得

所求直线方程为,或

(2)直线与圆相交,斜率必定存在,且不为0,设直线方程为

则圆心到直线的距离

又∵三角形面积

∴当d时,S取得最小值2,则

故直线方程为yx-1,或y=7x-7.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋子中装有编号为的3个黑球和编号为的2个红球,从中任意摸出2个球.

(Ⅰ)写出所有不同的结果;

(Ⅱ)求恰好摸出1个黑球和1个红球的概率;

(Ⅲ)求至少摸出1个红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,在三棱柱中,底面是边长为2的等边三角形,的中点.

)求证:

)若四边形是正方形,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在 对应的小矩形的面积分别是,且.

(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;

(2)计算在五一活动中消费超过3000元的消费者的平均年龄;

(3)若按照分层抽样,从年龄在 的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex-ax-2.

(1)求f(x)的单调区间;

(2)若a=1,k为整数,且当x>0时,(x-k)f(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为Sn,点在直线上,数列为等差数列,且,前9项和为153.

(1)求数列的通项公式;

(2)设,数列的前n项和为,求使不等式对一切的都成立的最大整数k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了参加师大附中第30届田径运动会的开幕式,高三年级某6个班联合到集市购买了6根竹竿,作为班期的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1单位:米

1若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;

2若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根从这6根竹竿中随机抽取两根,若期望这两根竹竿的价格之和为18元,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数,为自然对数的底数.

1)当时,求的最大值;

2)若在区间上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为,且椭圆C过点P3,2

求椭圆C的标准方程;

与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案