精英家教网 > 高中数学 > 题目详情
已知三棱锥A-BOC,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为   
【答案】分析:由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.
解答:解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),
由空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的 或该三棱锥减去此球体的
即:

故答案为:或 36-
点评:.此题考查了学生的空间想象能力,解答的关键是对球体,三棱锥的体积公式理解与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•鹰潭模拟)已知三棱锥A-BOC,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为
π
6
或36-
π
6
π
6
或36-
π
6

查看答案和解析>>

科目:高中数学 来源:2013-2014学年辽宁省五校协作体高三上学期期中考试理科数学试卷(解析版) 题型:填空题

已知三棱锥A﹣BOCOAOBOC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点NBCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为_________

 

查看答案和解析>>

科目:高中数学 来源:鹰潭模拟 题型:填空题

已知三棱锥A-BOC,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为______、

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省长春市东北师大附中高三(上)第三次摸底数学试卷(解析版) 题型:填空题

已知三棱锥A-BOC,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为   

查看答案和解析>>

同步练习册答案