精英家教网 > 高中数学 > 题目详情
10.(文)函数f(x)=x3-3x2-9x+a在[0,4]上的最大值3,则a=(  )
A.30B.-11C.3D.20

分析 先求出函数的导数,判断函数的单调性,求出极值,然后求解端点的函数值f(0)与f(4),利用f(x)的最大值,求出a.

解答 解:∵f(x)=x3-3x2-9x+a,f′(x)=3x2-6x-9.
令f′(x)<0,解得-1<x<3,
所以函数f(x)的单调递减区间为(-1,3).函数的定义域为:[0,4].
∵f(0)=a,f(4)=a-18,
∴f(4)<f(0).
因为在(0,3)上f′(x)<0,所以f(x)在[0,3]上单调递减,
又由于f(x)在[3,4]上单调递增,
函数f(x)在区间[0,4]上的最小值为3,
可得a=3.
故选:C.

点评 本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.以及在闭区间上的最值问题等基础知识,同时考查了分析与解决问题的综合能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在等差数列{an}中,a1+a2=7,a3=8.令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$.求数列{an}的通项公式以及数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:f(α)=$\frac{sin(4π-α)cos(π-α)cos(\frac{3π}{2}+α)cos(\frac{7π}{2}-α)}{cos(π+α)sin(2π-α)sin(π+α)sin(\frac{9π}{2}-α)}$
(1)化简 f(α)          
(2)求f(-$\frac{31}{6}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m是两个正数2,8的等比中项,则圆锥曲线${x^2}+\frac{y^2}{m}=1$的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$或$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{{\sqrt{3}}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个口袋中装有大小形状完全相同的n+3个乒乓球,其中有1个乒乓球上标有数字0,有2个乒乓球上标有数字2,其余n个乒乓球上均标有数字3(n∈N*),若从这个口袋中随机地摸出2个乒乓球,恰有一个乒乓球上标有数字2的概率是$\frac{8}{15}$.
(Ⅰ)求n的值;
(Ⅱ)从口袋中随机地摸出2个乒乓球,设ξ表示所摸到的2个乒乓球上所标数字之和,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=${log_{\frac{1}{3}}}$2,b=${log_{\frac{1}{2}}}\frac{1}{3}$,c=${(\frac{1}{2})^{0.3}}$,则(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知对k∈R,直线y-kx-1=0与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围(  )
A.(1,4]B.[1,4)C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.集合M={x|0<x≤3},N={x|0<x≤2},则“a∈M”是“a∈N”的充分不必要条件
B.命题“若a∈M,则b∉M”的否命题是“若a∉M,则b∈M”
C.“|a|>|b|”是“a2>b2”的必要不充分条件
D.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b都不是奇数”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是数列{log2an}的前n项和Tn
(1)求数列{an}的通项公式;
(2)求Tn
(3)求满足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})>\frac{1011}{2014}$的最大正整数n的值.

查看答案和解析>>

同步练习册答案