精英家教网 > 高中数学 > 题目详情
15.设a=${log_{\frac{1}{3}}}$2,b=${log_{\frac{1}{2}}}\frac{1}{3}$,c=${(\frac{1}{2})^{0.3}}$,则(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

分析 利用对数函数、指数函数的单调性直接求解.

解答 解:∵a=${log_{\frac{1}{3}}}$2<$lo{g}_{\frac{1}{3}}1$=0,
b=${log_{\frac{1}{2}}}\frac{1}{3}$>$lo{g}_{\frac{1}{2}}\frac{1}{2}$=1,
0<c=${(\frac{1}{2})^{0.3}}$<$(\frac{1}{2})^{0}$=1,
∴a<c<b.
故选:D.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知f(x)=x2+2xf′(1),则f′(0)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x3-ax2+2x在实数集R上单调递增的一个充分不必要条件是(  )
A.a∈[0,6]B.$a∈[-\sqrt{6},\sqrt{6}]$C.a∈[-6,6]D.a∈[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$α∈(0,\frac{π}{2}),β∈(\frac{π}{2},π)$,且$cosα=\frac{3}{5}$,$sinβ=\frac{{\sqrt{2}}}{10}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(文)函数f(x)=x3-3x2-9x+a在[0,4]上的最大值3,则a=(  )
A.30B.-11C.3D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示在四棱锥A-BCDM中,BD⊥平面ABC,AC=BC,N是棱AB的中点.
求证:CN⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设过曲线f(x)=-ex-x+3a上任意一点处的切线为l1,总存在过曲线g(x)=(x-1)a+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为(  )
A.[-1,1]B.[-2,2]C.[-2,1]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知正三角形的内切圆与外接圆的周长之比为$\frac{1}{2}$,请类比出空间中的正确结论,正四面体的内切球与外接球的表面积之比为1:9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=lg(x2-2mx+3m)在[1,+∞)上是增函数,则m的取值范围为(-1,1].

查看答案和解析>>

同步练习册答案