精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=lg(x2-2mx+3m)在[1,+∞)上是增函数,则m的取值范围为(-1,1].

分析 令u(x)=x2-2mx+3m,由复合函数的单调性可得函数u(x)在区间[1,+∞)上单调递增且恒为正实数,再解不等式组即可.

解答 解:记u(x)=x2-2mx+3m,则f(x)=lgu(x),显然,
u(x)在(-∞,m)上单调递减,在(m,+∞)上单调递增,
再由复合函数的单调性可得,
函数u(x)在区间[1,+∞)上单调递增且恒为正实数,
则$\left\{\begin{array}{l}{m≤1}\\{1-2m+3m>0}\end{array}\right.$,解得-1<m≤1,
故答案为:(-1,1].

点评 本题主要考查了复合函数单调性性的应用,二次函数的图象和性质,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设a=${log_{\frac{1}{3}}}$2,b=${log_{\frac{1}{2}}}\frac{1}{3}$,c=${(\frac{1}{2})^{0.3}}$,则(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π).
x$-\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ) 请写出函数f(x)的解析式,并求函数f(x)的单调递增区间;
(Ⅱ) 求函数f(x)在区间$[0,\frac{π}{2}]$上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过x轴下方的一动点P作抛物线C:x2=2y的两切线,切点分别为A,B,若直线AB到圆x2+y2=1相切,则点P的轨迹方程为(  )
A.y2-x2=1(y<0)B.(y+2)2+x2=1C.${x^2}+\frac{y^2}{4}=1(y<0)$D.x2=-y-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是数列{log2an}的前n项和Tn
(1)求数列{an}的通项公式;
(2)求Tn
(3)求满足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})>\frac{1011}{2014}$的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若A、B是两个集合,则下列命题中真命题是(  )
A.如果A⊆B,那么A∩B=AB.如果A∩B=A,那么(∁UA)∩B=∅
C.如果A⊆B,那么A∪B=AD.如果A∪B=A,那么A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知sinα=2sinβ,tanα=3tanβ,则cos2α=$-\frac{1}{4}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知角β的终边在直线y=-x上.
(1)写出角β的集合S;
(2)写出S中适合不等式-360°<β<360°的元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.在△ABC中,“A>B”是“sinA>sinB”必要不充分条件
C.“若tanα≠$\sqrt{3}$,则α≠$\frac{π}{3}$”是真命题
D.?x0∈(-∞,0)使得3x0<4x0成立

查看答案和解析>>

同步练习册答案