精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤2的解集为{x|1≤x≤5},求实数a的值;
(2)在(1)的条件下,若不等式f(2x)+f(x+2)≥m对一切实数x恒成立,求实数m的取值范围.
考点:绝对值不等式的解法,函数恒成立问题
专题:函数的性质及应用
分析:(1)利用不等式f(x)≤2的解集为{x|1≤x≤5},去掉绝对值符号,然后求实数a的值;
(2)在(1)的条件下,若不等式f(2x)+f(x+2)≥m对一切实数x恒成立,转化为分段函数,然后求实数m的取值范围.
解答: (本小题满分10分)选修4-5:不等式选讲
解:(1)由f(x)≤2得|x-a|≤2,解得a-2≤x≤a+2,------------------(2分)
又不等式f(x)≤2的解集为{x|1≤x≤5},所以
a-2=1
a+2=5
,解得a=3;
-------------------(4分)
(2)当a=3时,f(x)=|x-3|,--------------------(5分)
设g(x)=f(2x)+f(x+2),
g(x)=f(2x)+f(x+2)=|2x-3|+|x-1|=
3x-4,       x≥
3
2
2-x,        1<x<
3
2
-3x+4,      x≤1

所以g(x)的最小值为g(
3
2
)=
1
2
,-------------------(8分)
故当不等式f(2x)+f(x+2)≥m对一切实数x恒成立时实数m的取值范围是m≤
1
2

---------------(10分)
点评:本题考查绝对值不等式的解法,分段函数的应用,函数的最值的求法,考查计算能力以及转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为征求个人所得税法修改建议,某机构对当地居民的月收入调查10000人,根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)),因操作人员不慎,未标出第五组顶部对应的纵轴数据.
(Ⅰ)请你补上第五组顶部对应的纵轴数据,并求居民月收入在[3000,4000)的频率;
(Ⅱ)根据频率分布直方图估算样本数据的中位数;
(Ⅲ)为了分析居民收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人进行分析,则月收入在[2500,3000)的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为公差不为0的等差数列,Sn为前n项和,a5和a7的等差中项为11,且a2•a5=a1•a14
(Ⅰ)求an及Sn
(Ⅱ)令bn=
1
anan+1
,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,a∈R,g(x)=x2+(a+2)x+1,若a>0,且对任意x1∈[-1,2].都存在x2∈(0,+∞),使得g(x1)=f(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(4x+φ)的图象向左平移
π
4
个单位,得到新函数的一条对称轴为x=
π
16
,则φ的值不可能是(  )
A、-
4
B、
π
4
C、
4
D、
4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数与y=|x|表示同一个函数的是(  )
A、y=(
x
2
B、y=(
5x
5
C、y=(
7
6x6
7
D、y=
x2
|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ax(a>1),则有(  )
A、f(2)<f(3)<g(0)
B、g(0)<f(2)<g(3)
C、f(2)<g(0)<f(3)
D、g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

经过(2,3)且在两坐标轴上截距相反的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合S={x|x≥2},集合T={x|x≤5}为整数集,则S∩T=
 

查看答案和解析>>

同步练习册答案