精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的最小正周期及单调增区间;

2)当时,求函数的最大值及最小值.

【答案】(1)周期,增区间为(2)最大值为,最小值为-1

【解析】

1)找出函数fx)解析式中的ω的值,代入周期公式即可求出函数的最小正周期,由正弦函数的单调递增区间[2kπ2kπ]列出关于x的不等式,求出不等式的解集即为函数的单调递增区间;

2)由x的范围,求出2x的范围,根据正弦函数的图象与性质可得2x时,fx)取得最大值,当2x时函数fx)取得最小值,分别求出最大值和最小值即可.

1fxsin2x),

ω2,∴最小正周期Tπ,由2kπ2x2kπkZ),

解得kπxkπkZ),

故函数fx)的单调增区间是[kπkπ]kZ);

2)当x[]时,(2x)∈[]

故当2x,即x时,fx)有最大值

2x,即x时,fx)有最小值﹣1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1求曲线处的切线方程

2证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且a2=2b.

(1)求椭圆的方程;

(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,下列个结论正确的是__________(把你认为正确的答案全部写上).

(1)任取,都有

(2)函数上单调递增;

(3),对一切恒成立;

(4)函数个零点;

(5)若关于的方程有且只有两个不同的实根,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】箱子里有16张扑克牌:红桃、4,黑桃、8、7、4、3、2,草花、6、5、4,方块、5,老师从这16张牌中挑出一张牌来,并把这张牌的点数告诉了学生甲,把这张牌的花色告诉了学生乙,这时,老师问学生甲和学生乙:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,老师听到了如下的对话:学生甲:我不知道这张牌;学生乙:我知道你不知道这张牌;学生甲:现在我知道这张牌了;学生乙:我也知道了.则这张牌是( )

A. 草花5B. 红桃

C. 红桃4D. 方块5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有黑扫黑、无黑除恶、无恶治乱,维护社会稳定和和平发展.扫黑除恶期间,大量违法分子主动投案,某市公安机关对某月连续7天主动投案的人员进行了统计,表示第天主动投案的人数,得到统计表格如下:

1

2

3

4

5

6

7

3

4

5

5

5

6

7

1)若具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)判定变量之间是正相关还是负相关.(写出正确答案,不用说明理由)

3)预测第八天的主动投案的人数(按四舍五入取到整数).

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:):

甲:91011121020

乙:81413101221

1)用茎叶图表示这些数据:

2)分别计算两组数据的中位数、平均数与方差,并由此估计甲、乙两种麦苗株高的平均数及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试比较3-(n为正整数)的大小,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:

①若为真命题,则均为真命题;

②命题“若,则”的逆否命题是“若,则”;

③若命题,则

④“”是“”的充分不必要条件.其中正确的结论有____.

查看答案和解析>>

同步练习册答案