精英家教网 > 高中数学 > 题目详情

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:):

甲:91011121020

乙:81413101221

1)用茎叶图表示这些数据:

2)分别计算两组数据的中位数、平均数与方差,并由此估计甲、乙两种麦苗株高的平均数及方差.

【答案】1)答案见解析;(2)两组数据中甲种麦苗株高的中位数为,平均数为12,方差为;乙种麦苗株高的中位数为,平均数为13,方差为;由此估计甲种麦苗株高的平均数为12,方差为,乙种麦苗株高的平均数为13,方差为

【解析】

1)直接由已知数据画茎叶图即可;

2)由于每组有6个数,所以中位数为最中间两个数的平均数,平均数和方差直接利用公求解,然后利用样本估计总体的情况

解:(1)茎叶图如图所示

2)甲种麦苗株高的中位数

甲种麦苗株高的平均数

甲种麦苗株高的方差

乙种麦苗株高的中位数

乙种麦苗株高的平均值

乙种麦苗株高的方差

由此估计甲种麦苗株高的平均数为12,方差为

乙种麦苗株高的平均数为13,方差为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】作出下列函数的大致图像,并写出函数的单调区间和值域.

1;(2;(3;(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的最小正周期及单调增区间;

2)当时,求函数的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)将的方程化为普通方程,将的方程化为直角坐标方程;

(Ⅱ)已知直线的参数方程为为参数,且交于点交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一个关于平面图形的命题:如图,同一平面内有两个边长都是2的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是等差数列{an}的前n项和,若,则 ( )

A. 38B. 20C. 10D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是平行四边形所在平面外一点如果.(1)求证:是平面的法向量

(2)求平行四边形的面积.

【答案】(1)证明见解析;(2).

【解析】试题分析:

(1)由题意结合空间向量数量积的运算法则计算可得.结合线面垂直的判断定理可得平面是平面的法向量.

(2)利用平面向量的坐标计算可得.

试题解析:

(1)

.

,又平面

是平面的法向量.

(2)

.

型】解答
束】
19

【题目】(1)求圆心在直线且与直线相切于点的圆的方程

(2)求与圆外切于点且半径为的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

同步练习册答案