【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)将
的方程化为普通方程,将
的方程化为直角坐标方程;
(Ⅱ)已知直线
的参数方程为
,
为参数,且
,
与
交于点
,
与
交于点
,且
,求
的值.
科目:高中数学 来源: 题型:
【题目】箱子里有16张扑克牌:红桃
、
、4,黑桃
、8、7、4、3、2,草花
、
、6、5、4,方块
、5,老师从这16张牌中挑出一张牌来,并把这张牌的点数告诉了学生甲,把这张牌的花色告诉了学生乙,这时,老师问学生甲和学生乙:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,老师听到了如下的对话:学生甲:我不知道这张牌;学生乙:我知道你不知道这张牌;学生甲:现在我知道这张牌了;学生乙:我也知道了.则这张牌是( )
A. 草花5B. 红桃![]()
C. 红桃4D. 方块5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线
与抛物线
交于
,
两点,与椭圆
交于
,
两点,直线
,
,
,
(
为坐标原点)的斜率分别为
,
,
,
,若
.
(1)是否存在实数
,满足
,并说明理由;
(2)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:
):
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21
(1)用茎叶图表示这些数据:
(2)分别计算两组数据的中位数、平均数与方差,并由此估计甲、乙两种麦苗株高的平均数及方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,圆
的极坐标方程为
,直线
的参数方程为
(
为参数),直线
和圆
交于
,
两点.
(1)求圆心的极坐标;
(2)直线
与
轴的交点为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).
(1)求
和
的直角坐标方程;
(2)若曲线
截直线
所得线段的中点坐标为
,求
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com