某工厂生产某种产品,已知该产品的月生产量
(吨)与每吨产品的价格p(元/吨)之间的关系式为:p=24200-0.2x2,且生产x吨的成本为
(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(注:利润=收入─成本)
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.
(1)求实数a的值;
(2)求函数f(x)的单调区间;
(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知函数
,
,![]()
(Ⅰ)当
时,若
在
上单调递增,求
的取值范围;
(Ⅱ)求满足下列条件的所有实数对
:当
是整数时,存在
,使得
是
的最大值,
是
的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对
,试构造一个定义在
,且
上的函数
,使当
时,
,当
时,
取得最大值的自变量的值构成以
为首项的等差数列。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(1)若![]()
在区间
上是增函数,求实数
的取值范围; (2)若
是
的极值点,求
在
上的最大值;(3)在(2)的条件下,是否存在实数
,使得函数
的图像与函数
的图象恰有3个交点?若存在,请求出实数
的取值范围;若不存在,试说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知二次函数
,直线
,直线![]()
(其中
,
为常数);.若直线
1、
2与函数
的图象以及
、
轴与函数
的图象所围成的封闭图形如图阴影所示.
(Ⅰ)求
、
、
的值;
(Ⅱ)求阴影面积
关于
的函数
的解析式;
(Ⅲ)若
问是否存在实数
,使得
的图象与
的图象有且只有两个不同的交点?若存在,求出
的值;若不存在,说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com