精英家教网 > 高中数学 > 题目详情

某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格p(元/吨)之间的关系式为:p=24200-0.2x2,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(注:利润=收入─成本)

解:每月生产x吨时的利润为
6分
8分
得当 当 
在(0,200)单调递增,在(200,+∞)单调递减,11分
的最大值为
答:每月生产200吨产品时利润达到最大,最大利润为315万元.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.
(1)求实数a的值;
(2)求函数f(x)的单调区间;
(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数
(Ⅰ)当时,若上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+blnx在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=logax(a>0且a≠1),如果对于任意的x∈[,2]都有|f(x)|≤1
成立,试求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (1)若在区间上是增函数,求实数的取值范围; (2)若的极值点,求上的最大值;(3)在(2)的条件下,是否存在实数,使得函数的图像与函数的图象恰有3个交点?若存在,请求出实数的取值范围;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知二次函数,直线,直线(其中为常数);.若直线12与函数的图象以及轴与函数的图象所围成的封闭图形如图阴影所示.
(Ⅰ)求的值;
(Ⅱ)求阴影面积关于的函数的解析式;
(Ⅲ)若问是否存在实数,使得的图象与的图象有且只有两个不同的交点?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数(常数.
(Ⅰ) 当时,求曲线在点处的切线方程;
(Ⅱ)讨论函数在区间上零点的个数(为自然对数的底数).

查看答案和解析>>

同步练习册答案