精英家教网 > 高中数学 > 题目详情

设椭圆的左、右焦点分别为 ,是椭圆上位于轴上方的动点 (Ⅰ)当取最小值时,求点的坐标;

(Ⅱ)在(Ⅰ)的情形下,是否存在以为直角顶点的内接于椭圆的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.

 

【答案】

 

解:(Ⅰ)设,则

因为在椭圆上,所以

,当时,取得最小值,此时点的坐标为.

(Ⅱ)设两个顶点为B,C,显然直线AC斜率存在,不妨设AC的直线方程为,代入椭圆的方程中可得,解得(即A点的横坐标),

由弦长公式得:

同理:z

,即,化解得:

,即.

考虑关于的方程,其判别式

(1)当时,,其两根设为,由于,故两根必为正根,显然,故关于的方程有三解,相应地,这样的等腰直角三角形有三个.

(2)当时,,此时方程的解,故方程

只有一解,相应地,这样的等腰直角三角形只有一个.

(3)当时,显然方程只有这一个解,相应地,这样的等腰直角三角形只有一个.

 

综上:当时,这样的等腰直角三角形有三个;当时,这样的等腰直角三角形只有一个.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在坐标原点、焦点在x轴上椭圆的离心率e=
3
3
,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年四川卷理)设椭圆的左、右焦点分别是,离心率,右准线上的两动点,且

(Ⅰ)若,求的值;

(Ⅱ)当最小时,求证共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 已知椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(I)求a与b;(II)设椭圆的左,右焦点分别是F1和F2,直线且与x轴垂直,动直线轴垂直,于点P,求线段PF1的垂直平分线与的交点M的轨迹方程,并指明曲线类型。

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

设椭圆的左、右焦点分别是F1、F2,离心率,右准线l上的两动点M、N,且
(Ⅰ)若,求a、b的值;
(Ⅱ)当最小时,求证共线。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市休宁中学高三(上)数学综合练习试卷1(文科)(解析版) 题型:解答题

已知中心在坐标原点、焦点在x轴上椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

同步练习册答案