精英家教网 > 高中数学 > 题目详情

【题目】设各项均为正数的数列{an}的前n项和为Sn , 且满足an2﹣2Sn=2﹣an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

【答案】
(1)解:由

两式相减得

,即(an+1﹣an)(an+1+an)﹣(an+1+an)=0

因为an>0,解得an+1﹣an=1(n∈N*

故数列{an}为等差数列,且公差d=1

,解得a1=2或a1=﹣1(舍去)

故an=n+1


(2)解:

=


【解析】(1)由 ,得 ,两式相减得 ,即 ,即an+1﹣an=1(n∈N*)即可求数列{an}的通项公式; 累加即可求数列{bn}的前n项和Tn
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点.

(1)求椭圆的方程;

(2)若不经过点的直线交于两点,且直线与直线的斜率之和为,证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:Sn=1﹣an(n∈N*),其中Sn为数列{an}的前n项和. (Ⅰ)试求{an}的通项公式;
(Ⅱ)若数列{bn}满足: (n∈N*),试求{bn}的前n项和公式Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2sin(3x+φ)的图象向右平移动 个单位,得到的图象关于y轴对称,则|φ|的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=lnx﹣x﹣mx在区间[1,e2]内有唯一的零点,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点 和直线相切.

1)求圆的方程;

(2)若直线经过点并且被圆截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中点.
(1)求证:A1C∥平面BED;
(2)求二面角E﹣BD﹣A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,若sin A=2sin Bcos Csin2A=sin2B+sin2C,试判断ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣t)|x|(t∈R).
(1)当t=2时,求函数f(x)的单调性;
(2)试讨论函数f(x)的单调区间;
(3)若t∈(0,2),对于x∈[﹣1,2],不等式f(x)>x+a都成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案