精英家教网 > 高中数学 > 题目详情

【题目】ABC中,若sin A=2sin Bcos Csin2A=sin2B+sin2C,试判断ABC的形状.

【答案】ABC是等腰直角三角形

【解析】试题分析:

sin2Asin2Bsin2C及正弦定理可得a2b2c2ABC为直角三角形再由sin A2sin Bcos C将角化为边(或化为角)可得(或BC),从而得ABC为等腰三角形,故ABC为等腰直角三角形

试题解析:

方法一:

根据正弦定理

sin2Asin2Bsin2C

a2b2c2

A是直角BC90°

sin A=2sin Bcos C,

整理得

∴△ABC是等腰直角三角形

方法二:

根据正弦定理

sin2Asin2Bsin2C

a2b2c2

A是直角BC90°

sin A=2sin Bcos C,

A180°(BC)

sin(BC)sin Bcos Ccos Bsin C2sin Bcos C

sin(BC)0

又-90°<BC<90°

BC0

BC

∴△ABC是等腰直角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求经过点A(-1,-2)且到原点距离为1的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn , 且满足an2﹣2Sn=2﹣an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ (m∈R)在区间[1,e]取得最小值4,则m=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的定义域.

)判断在定义域上的单调性,并用单调性定义证明你的结论.

)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,设表示数列 中的最大项.数列满足:

)若,求的前项和.

)设数列为等差数列,证明: 或者为常数),

)设数列为等差数列,公差为,且

求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C在直角坐标系xOy下的参数方程为 (θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(I)求曲线C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρcos(θ﹣ )=3 ,射线OT:θ= (ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3ax. (Ⅰ)若函数f(x)在x=1处的切线斜率为2,求实数a;
(Ⅱ)若a=1,求函数f(x)在区间[0,3]的最值及所对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为: ,直线的方程为

)当时,求直线被圆截得的弦长

)当直线被圆截得的弦长最短时,求直线的方程

)在()的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

查看答案和解析>>

同步练习册答案