精英家教网 > 高中数学 > 题目详情

【题目】对于数列,设表示数列 中的最大项.数列满足:

)若,求的前项和.

)设数列为等差数列,证明: 或者为常数),

)设数列为等差数列,公差为,且

求证:数列是等差数列.

【答案】(1);(2)证明见解析;(3)证明见解析.

【解析】试题分析:(1可得 ,从而可得结果;(2公差为,当时, 单调递减, 为常数),当时, 单调递增, 或者为常数);(求出 以此类推

为常数,所以数列是等差数列.

试题解析:(

时, 单调递增,

时, 单调递减,

是等差数列,设其公差为

时, 单调递减, 为常数),

时, 单调递增,

或者为常数),

是等差数列,

同理

以此类推

为常数,

∴数列是等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四边形OABC的四个顶点坐标分别为O(0,0)、A(6,2)、B(4,6)、C(2,6),直线ykx(<k<3)分四边形OABC为两部分,S表示靠近x轴一侧的那一部分的面积.

(1)求Sf(k)的函数表达式;

(2)当k为何值时,直线ykx将四边形OABC分为面积相等的两部分?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点 和直线相切.

1)求圆的方程;

(2)若直线经过点并且被圆截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=2,an+1=an2+6an+6(n∈N×
(1)设Cn=log5(an+3),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn= ,数列{bn}的前n项和为Tn , 求证:﹣ ≤Tn<﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,若sin A=2sin Bcos Csin2A=sin2B+sin2C,试判断ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,其左、右焦点为F1、F2 , 点P是坐标平面内一点,且|OP|= = ,其中O为坐标原点.

(1)求椭圆C的方程;
(2)如图,过点S(0,﹣ )的动直线l交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数的定义域为,且存在非零常数,对任意 恒成立,则称为线周期函数, 的线周期.

(1)下列函数①,②,③(其中表示不超过x的最大整数),是线周期函数的是 (直接填写序号);

(2)若为线周期函数,其线周期为,求证: 为周期函数;

(3)若为线周期函数,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线3x+y﹣1=0上,且圆C在x轴、y轴上截得的弦长AB和MN分别为
(1)求圆C的方程;
(2)若圆心C位于第四象限,点P(x,y)是圆C内一动点,且x,y满足 ,求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

)求不等式的解集.

)若对于 恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案