精英家教网 > 高中数学 > 题目详情
如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1).
(1)判断EF与平面ABC的位置关系并给予证明;
(2)是否存在λ,使得平面BEF⊥平面ACD,如果存在,求出λ的值,如果不存在,说明理由.
分析:(1)不论λ为何值,总有EF⊥平面ABC,只需证CD⊥平面ABC,在△BCD中,根据∠BCD=90°得证;
(2)存在λ=
6
7
,使得平面BEF⊥平面ACD,只需证明λ=
6
7
时,BE⊥平面ACD.
解答:解:(1)EF⊥平面ABC.
证明:因为AB⊥平面BCD,所以AB⊥CD,
又在△BCD中,∠BCD=90°,所以BC⊥CD,
又AB∩BC=B,所以CD⊥平面ABC,
又在△ACD,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1).
∴EF∥CD,
∴EF⊥平面ABC;
(2)存在λ=
6
7
,使得平面BEF⊥平面ACD.
∵CD⊥平面ABC,BE?平面ABC,∴BE⊥CD
在直角△ABD中,∠ADB=60°,∴AB=BDtan60°=
6
,∴AC=
7

当BE⊥AC时,BE=
AB×BC
AC
=
6
7
,AE=
36
7

AE
AC
=
6
7

即λ=
6
7
时,BE⊥AC
∵BE⊥CD,AC∩CD=C
∴BE⊥平面ACD
∵BE?平面BEF
∴平面BEF⊥平面ACD
∴存在λ=
6
7
,使得平面BEF⊥平面ACD.
点评:本题考查线面垂直,考查面面垂直,考查学生分析解决问题的能力.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1)

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)若BE⊥AC,求证:平面BEF⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源:2014届河北省高一上学期二调数学 题型:解答题

如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且==λ(0<λ<1).

(1)判断EF与平面ABC的位置关系并给予证明;

(2)是否存在λ,使得平面BEF⊥平面ACD,如果存在,求出λ的值,如果不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且数学公式=λ(0<λ<1).
(1)判断EF与平面ABC的位置关系并给予证明;
(2)是否存在λ,使得平面BEF⊥平面ACD,如果存在,求出λ的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1)

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)若BE⊥AC,求证:平面BEF⊥平面ACD.
精英家教网

查看答案和解析>>

同步练习册答案